Ir al contenido

Documat


Neural Collaborative Filtering Classification Model to Obtain Prediction Reliabilities

  • Jesús Bobadilla [1] Árbol académico ; Abraham Gutiérrez [1] Árbol académico ; Santiago Alonso [1] ; Ángel González Prieto [1] Árbol académico
    1. [1] Universidad Politécnica de Madrid

      Universidad Politécnica de Madrid

      Madrid, España

  • Localización: IJIMAI, ISSN-e 1989-1660, Vol. 7, Nº. 4, 2022, págs. 18-26
  • Idioma: inglés
  • DOI: 10.9781/ijimai.2021.08.010
  • Enlaces
  • Resumen
    • Neural collaborative filtering is the state of art field in the recommender systems area; it provides some models that obtain accurate predictions and recommendations. These models are regression-based, and they just return rating predictions. This paper proposes the use of a classification-based approach, returning both rating predictions and their reliabilities. The extra information (prediction reliabilities) can be used in a variety of relevant collaborative filtering areas such as detection of shilling attacks, recommendations explanation or navigational tools to show users and items dependences. Additionally, recommendation reliabilities can be gracefully provided to users: “probably you will like this film”, “almost certainly you will like this song”, etc.

      This paper provides the proposed neural architecture; it also tests that the quality of its recommendation results is as good as the state of art baselines. Remarkably, individual rating predictions are improved by using the proposed architecture compared to baselines. Experiments have been performed making use of four popular public datasets, showing generalizable quality results. Overall, the proposed architecture improves individual rating predictions quality, maintains recommendation results and opens the doors to a set of relevant collaborative filtering fields.

  • Referencias bibliográficas
    • K. Madadipouya, S. Chelliah, “A Literature Review on Recommender Systems Algorithms, Techniques and Evaluations”, Brain: Broad Research in...
    • S.S. Sohail, J. Siddiqui, R. Ali, “Classifications of Recommender Systems: A review”, Journal of Engineering Science and Technology Review,...
    • H. Zamani, A. Shakery, “A language model-based framework for multipublisher content-based recommender systems”, Information Retrieval Journal,...
    • M.Y.H. Al-Shamri, “User profiling approaches for demographic recommender systems”, Knowledge-Based Systems, vol. 100, 2016, pp. 175-187.
    • N.M. Villegas, C. Sánchez, J. Díaz-Cely, G. Tamura, “Characterizing context-aware recommender systems: A systematic literature review”, Knowledge-Based...
    • A. Rezvanian, B. Moradabadi, M. Ghavipour, M.M. Daliri Khomami, M.R. Meybodi, “Social recommender systems”, Studies in Computational Intelligence,...
    • A. Hernando, J. Bobadilla, F. Ortega, A. Gutiérrez, “A probabilistic model for recommending to new cold-start non-registered users”, Information...
    • J. Bobadilla, A. Gutiérrez, S. Alonso, R. Hurtado, “A Collaborative Filtering Probabilistic Approach for Recommendation to Large Homogeneous...
    • V. Yu. Ignat’ev, D. V. Lemtyuzhnikova, D. I. Rul’, I. L. Ryabov, “Constructing a Hybrid Recommender System”, Journal of Computer and Systems...
    • H. Li, Y. Liu, Y. Qian, N. Mamoulis, W. Tu, Wenting ; D. Cheung, “HHMF: hidden hierarchical matrix factorization for recommender systems”,...
    • H. Xiangnan, L. Lizi, Z. Hanwang, “Neural Collaborative Filtering”, in International World Wide Web Conference Committee (IW3C2), Perth, Australia,...
    • D. Bokde, S. Girase, D. Mukhopadhyay, “Matrix Factorization Model in Collaborative Filtering Algorithms: A Survey”, Procedia Computer Science,...
    • S. Rendle, W. Krichene, L. Zhang, J.R. Anderson, “Neural Collaborative Filtering vs. Matrix Factorization”, in RecSys ‘20: Fourteenth ACM...
    • H.J. Xue, Xi. Dai, J. Zhang, S. Huang, J. Chen, “Deep Matrix Factorization Models for Recommender Systems”, in Proceedings of the Twenty-Sixth...
    • Y. Liu, S.L. Wang, J.F. Zhang, W. Zhang, W. Li, “A neural collaborative filtering method for identifying miRNA-disease associations”, Neurocomputing,...
    • L. Corinzia, F. Laumer, A. Candreva, M. Taramasso, F. Maisano, J.M. Buhmann, “Neural collaborative filtering for unsupervised mitral valve...
    • H. Gao, Y. Xu, Y. Yin, W. Zhang, R. Li, X. Wang, “Context-Aware QoS Prediction with Neural Collaborative Filtering for Internet-of-Things...
    • J. Bobadilla, R. Lara-Cabrera, A. González-Prieto, F. Ortega, “DeepFair: Deep Learning for Improving Fairness in Recommender Systems”, International...
    • F. Ullah, B. Zhang, R.U. Khan, T.S. Chung, M. Attique, K. Khan, S. Khediri, S. Jan, “Deep Edu: A Deep Neural Collaborative Filtering for Educational...
    • Y. Guo, Z. Yan, “Recommended System: Attentive Neural Collaborative Filtering”, IEEE access, vol. 8, 2020, pp. 125953-125960.
    • W. Chen, F. Cai, H. Chen, M. Rijke, “Joint Neural Collaborative Filtering for Recommender Systems”, ACM transactions on information systems,...
    • S. Yu, M. Yang, Min, Q. Qu, Y. Shen, “Contextual-boosted deep neural collaborative filtering model for interpretable recommendation”, Expert...
    • L. Sang, M. Xu, S. Qian, X. Wu, “Knowledge graph enhanced neural collaborative recommendation”, Expert systems with applications, vol. 164,...
    • C.Yang, L. Miao, B. Jiang, D. Li, D. Cao, “Gated and attentive neural collaborative filtering for user generated list recommendation”, Knowledge-based...
    • T. Huang, D. Zhang, L. Bi, “Neural embedding collaborative filtering for recommender systems”, Neural computing & applications, vol. 32,...
    • M. Si, Q. Li, “Shilling attacks against collaborative recommender systems: a review”, The Artificial intelligence review, vol. 53, no. 1,...
    • F. Zhang, Z. Ling, S. Wang, “Unsupervised approach for detecting shilling attacks in collaborative recommender systems based on user rating...
    • S. Alonso, J. Bobadilla, F. Ortega, R. Moya, “Robust Model-Based Reliability Approach to Tackle Shilling Attacks in Collaborative Filtering...
    • A. Hernando, J. Bobadilla, F. Ortega, A. Gutiérrez, “Method to interactively visualize and navigate related information”, Expert Systems with...
    • A. Hernando, R. Moya, F. Ortega, J. Bobadilla, “Hierarchical graph maps for visualization of collaborative recommender systems”, Journal of...
    • B. Zhu, F. Ortega, J. Bobadilla, A. Gutiérrez, “Assigning reliability values to recommendations using matrix factorization”, Journal of computational...
    • S. Ahmadian, P. Moradi, F. Akhlaghian, Fardin, “An improved model of trust-aware recommender systems using reliability measurements”, in 6th...
    • A. Hernando, J. Bobadilla, F. Ortega, J. Tejedor, “Incorporating reliability measurements into the predictions of a recommender system”, Information...
    • F. Ortega, R. Lara-Cabrera, A. González-Prieto, J. Bobadilla, “Providing reliability in recommender systems through Bernoulli Matrix Factorization”,...
    • J. Bobadilla, A. Gutiérrez, F. Ortega, B. Zhu, “Reliability quality measures for recommender systems”, Information Sciences, Vol. 442-443,...
    • J. Bobadilla, F. Ortega, A. Gutierrez, S. Alonso, “Classification-based Deep Neural Network Architecture for Collaborative Filtering Recommender...
    • J. Bobadilla, S. Alonso, A. Hernando, “Deep learning architecture for collaborative filtering recommender systems”, Applied Sciences, vol....
    • F.M. Harper, J.A. Konstan, “The movielens datasets: History and context”, International Journal of Interactive Multimedia and Artificial Intelligence,...
    • https://www.kaggle.com/azathoth42/myanimelist
    • F. Ortega, B. Zhu, J. Bobadilla, A. Hernando, “CF4J: Collaborative filtering for Java”, Knowledge-Based Systems, vol. 152, 2018, pp. 94–99.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno