Ir al contenido

Documat


Asymptotics of Solution Curves of Kirchhoff Type Elliptic Equations with Logarithmic Kirchhoff Function

  • Tetsutaro Shibata [1]
    1. [1] Hiroshima University

      Hiroshima University

      Naka-ku, Japón

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study the one-dimensional nonlocal elliptic equation of Kirchhoff type with logarithmic Kirchhoff function. We establish the precise asymptotic formulas for the solution uλ(x) as λ → ∞. Here, λ > 0 is the bifurcation parameter.

  • Referencias bibliográficas
    • 1. Alves, C.O., Corréa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl....
    • 2. Cheng, B.: New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems. J. Math. Anal. Appl. 394(2),...
    • 3. Corrêa, F.J.S.A.: On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal. 59, 1147–1155 (2004)
    • 4. Corrêa, F.J.S.A., de Morais Filho, C.: On a class of nonlocal elliptic problems via Galerkin method. J. Math. Anal. Appl. 310(1), 177–187...
    • 5. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)
    • 6. Goodrich, C.S.: A one-dimensional Kirchhoff equation with generalized convolution coefficients. J. Fixed Point Theory Appl. 23(4), 73 (2021)
    • 7. Goodrich, C.S.: A topological approach to nonlocal elliptic partial differential equations on an annulus. Math. Nachr. 294, 286–309 (2021)
    • 8. Goodrich, C.S.: Differential equations with multiple sign changing convolution coefficients. Int. J. Math. 32(8), 2150057 (2021)
    • 9. Goodrich, C.S.: An analysis of nonlocal difference equations with finite convolution coefficients. J. Fixed Point Theory Appl. 24(1), 19...
    • 10. Liang, Z., Li, F. Li., Shi, J.: Positive solutions of Kirchhoff-type non-local elliptic equation a bifurcation approach. Proc. Royal Soc....
    • 11. Liu, F., Luo, H., Dai, G.: Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations. Electron. J. Differ. Equ....
    • 12. Laetsch, T.: The number of solutions of a nonlinear two point boundary value problem. Indiana Univ. Math. J. 20, 1–13 (1970/71)
    • 13. Liang, Z., Li, F., Shi, J.: Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. Ann....
    • 14. Méndez, O.: On the eigenvalue problem for a class of Kirchhoff-type equations. J. Math. Anal. Appl. 494(2), 124671 (2021)
    • 15. Shibata, T.: Bifurcation diagrams of one-dimensional Kirchhoff type equations. Adv. Nonlinear Anal. 12, 356–368 (2023)
    • 16. Shibata, T.: Global and asymptotic behaviors of bifurcation curves of one-dimensional nonlocal elliptic equations. J. Math. Anal. Appl....
    • 17. Shibata, T.: Asymptotic behavior of solution curves of nonlocal one-dimensional elliptic equations. Bound. Value Probl. Paper No. 63....
    • 18. Sta ´nczy, R.: Nonlocal elliptic equations. Nonlinear Anal. 47, 3579–3584 (2001)
    • 19. Wang, W., Tang, W.: Bifurcation of positive solutions for a nonlocal problem. Mediterr. J. Math. 13, 3955–3964 (2016)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno