Ir al contenido

Documat


Existence and Multiplicity of Solutions for a Fractional Schrödinger–Poisson System with Subcritical or Critical Growth

  • Autores: Guangze Gu, Changyang Mu, Zhipeng Yang
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we study the existence of positive ground state solutions and infinitely many geometrically distinct solutions for the following fractional Schrödinger– Poisson system (−)su + V(x)u + φu = f (x, u), in R3, (−)sφ = u2, in R3, where s ∈ ( 3 4 , 1) is a fixed constant, f is continuous, superlinear at infinity with subcritical or critical growth and V and f are asymptotically periodic in x. Applying the method of Nehari manifold and Lusternik–Schnirelmann category theory, three existence results are given.

  • Referencias bibliográficas
    • 1. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)
    • 2. Benci, V., Cerami, G.: The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch. Ration....
    • 3. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)
    • 4. Benci, V., Fortunato, G.: Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14,...
    • 5. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88,...
    • 6. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial. Differ. Equ. 32(7–9), 1245–1260...
    • 7. Chang, X.: Ground state solutions of asymptotically linear fractional Schrödinger equation. J. Math. Phys. 54, 061504 (2013)
    • 8. D’Aprile, T., Wei, J.: On bound states concentrating on spheres for the Maxwell–Schrödinger equation. SIAM J. Math. Anal. 37, 321–342 (2005)
    • 9. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)
    • 10. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)
    • 11. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc....
    • 12. He, X.: Multiplicity and concentration of positive solutions for the Schrödinger–Poisson equations. Z. Angew. Math. Phys. 62, 869–889...
    • 13. He, X., Zou, W.: Existence and concentration of ground states for Schrödinger–Poisson equations with critical growth. J. Math. Phys. 53,...
    • 14. Ianni, I., Vaira, G.: On concentration of positive bound states for the Schrödinger–Poisson problem with potentials. Adv. Nonlinear Stud....
    • 15. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman– Lazer-type problem set on RN . Proc....
    • 16. Jeanjean, L., Tanaka, K.: A positive solution for a nonlinear Schrödinger equation on RN . Indiana Univ. Math. J. 54, 443–464 (2005)
    • 17. Jiang, Y., Zhou, H.: Schrödinger–Poisson system with steep potential well. J. Differ. Equ. 251, 582–608 (2011)
    • 18. Jin, T., Yang, Z.: The fractional Schrödinger–Poisson systems with infinitely many solutions. J. Korean Math. Soc. 57(2), 489–506 (2020)
    • 19. Landkof, N.S.: Foundations of Modern Potential Theory, trans. from Russian (Grundlehren der Mathematischen Wissenschaften [Fundamental...
    • 20. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)
    • 21. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)
    • 22. Lions, P.: Solutions of Hartree–Fock equations for coulomb systems. Comm. Math. Phys. 109, 33–97 (1987)
    • 23. Lions, P.L.: The concentration-compactness principle in the calculus of variations. the locally compact case, part 1. volume 1, pages...
    • 24. Lions, P.L.: The concentration-compactness principle in the calculus of variations. the locally compact case, part 2. volume 1, pages...
    • 25. Liu, W.: Existence of multi-bump solutions for the fractional Schrödinger–Poisson system. J. Math. Phys. 57, 091502 (2016)
    • 26. Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. In: CBMS Regional Conference...
    • 27. Ruiz, D., Vaira, G.: Cluster solutions for the Schrödinger–Poisson-Slater problem around a local minimum of the potential. Rev. Mat. Iberoam....
    • 28. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in RN . J. Math. Phys. 54, 031501 (2013)
    • 29. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc. 367, 67–102 (2015)
    • 30. Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth. Nonlinearity 27, 187–207 (2014)
    • 31. Struwe, M.: Variational methods, 2nd edn. Springer, Berlin Heidelberg (1996)
    • 32. Sun, J., Ma, S.: Ground state solutions for some Schrödinger–Poisson systems with periodic potentials. J. Differ. Equ. 260(3), 2119–2149...
    • 33. Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257, 3802–3822 (2009)
    • 34. Szulkin, A., Weth, T.: The methods of Nehari manifold. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of nonconvex analysis ans applications....
    • 35. Teng, K.: Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system with critical sobolev exponent....
    • 36. Wang, J., Tian, L., Xu, J., Zhang, F.: Existence and concentration of positive solutions for semilinear Schrödinger–Poisson systems in...
    • 37. Willem, M.: Minimax theorems. progress in nonlinear differential equations and their applications, vol. 24. Birkhäuser Boston Inc, Boston,...
    • 38. Wu, X., Wu, K.: Geometrically distinct solutions for quasilinear elliptic equations. Nonlinearity 27, 987–1001 (2014)
    • 39. Yang, Z., Yu, Y.: Existence and concentration of solution for Schrödinger–Poisson system with local potential. Partial Differ. Equ. Appl....
    • 40. Yang, Z., Yu, Y., Zhao, F.: The concentration behavior of ground state solutions for a critical fractional Schrödinger–Poisson system....
    • 41. Yang, Z., Yu, Y., Zhao, F.: Concentration behavior of ground state solutions for a fractional Schrödinger– Poisson system involving critical...
    • 42. Yang, Z., Zhang, W., Zhao, F.: Existence and concentration results for fractional Schrödinger–Poisson system via penalization method....
    • 43. Yang, Z., Zhao, F., Zhao, S.: Existence and multiplicity of normalized solutions for a class of fractional Schrödinger–Poisson equations....
    • 44. Yu, Y., Zhao, F., Zhao, L.: The concentration behavior of ground state solutions for a fractional Schrödinger–Poisson system. Calc. Var....
    • 45. Zhang, H., Xu, J., Zhang, F.: Existence and multiplicity of solutions for superlinear fractional Schrödinger equations in RN . J. Math....
    • 46. Zhang, J., Squassina, M.: Fractional Schrödinger–Poisson systems with a general subcritical or critical nonlinearity. Adv. Nonlinear Stud....
    • 47. Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential....
    • 48. Zhao, L., Zhao, F.: Positive solutions for Schrödinger–Poisson equations with a critical exponent. Nonlinear Anal. 70(6), 2150–2164 (2009)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno