Ir al contenido

Documat


Random Uniform Attractors for First Order Stochastic Non-Autonomous Lattice Systems

  • Ahmed Y. Abdallah [1]
    1. [1] University of Jordan

      University of Jordan

      Jordania

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study the existence of the random uniform attractor within the set of tempered closed bounded random sets for a family of first order stochastic non-autonomous lattice dynamical systems (LDSs) with multiplicative white noise, where the nonlinear part is an element of the hull of an almost periodic function in a suitable Banach space. Up to our knowledge it is the first time to study the existence of random uniform attractors for stochastic non-autonomous LDSs. Previously, the existence of random pullback attractors for different types of stochastic non-autonomous LDSs were investigated which are effective to describe the pullback dynamics, but, unfortunately, give no information for the forward dynamics. In fact the attraction in the random uniform attractor is uniform in time symbols from a symbol space. Moreover, a random uniform attractor is by definition pathwise pullback attracting, but has also a weak forward attraction in probability sense.

  • Referencias bibliográficas
    • 1. Abdallah, A.Y.: Attractors for first order lattice systems with almost periodic nonlinear part. Disc. Cont. Dyn. Sys-B 25, 1241–1255 (2020)
    • 2. Abdallah, A.Y.: Dynamics of second order lattice systems with almost periodic nonlinear part. Qualitative Theory of Dynam. Syst. 20, 1–23...
    • 3. Abdallah, A.Y.: Global attractor for the lattice dynamical system of a nonlinear Boussinesq equation. Abst. Appl. Anal. 2005, 655–671 (2005)
    • 4. Abdallah, A.Y., Wannan, R.T.: Second order non-autonomous lattice systems and their uniform attractors. Comm. Pure Appl. Anal. 18, 1827–1846...
    • 5. Arnold, A.: Random Dynamical Systems. Springer-Verlag, New York (1998)
    • 6. Bates, P.W., Lisei, H., Lu, K.: Attractors for stochastic lattice dynamical systems. Stochastics Dyn. 6, 1–21 (2006)
    • 7. Bates, P.W., Lu, K., Wang, B.: Attractors for lattice dynamical systems. Int. J. Bifurc. Chaos 11, 143–153 (2001)
    • 8. Bates, P.W., Lu, K., Wang, B.: Attractors of non-autonomous stochastic lattice systems in weighted spaces. Physica D 289, 32–50 (2014)
    • 9. Bell, J.: Some threshold results for models of myelinated nerves. Math. Biosci. 54, 181–190 (1981)
    • 10. Bell, J., Cosner, C.: Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated...
    • 11. Bessaih, H., Garrido-Atienza, M.J., Köpp, V., SchmalfuSS, B.: Synchronization of stochastic lattice equations and upper semicontinuity...
    • 12. Boughoufala, A.M., Abdallah, A.Y.: Attractors for Fitzhugh-Nagumo lattice systems with almost periodic nonlinear parts. Disc. Cont. Dyn....
    • 13. Caraballo, T., Kloeden, P.E., Schmalfuß, B.: Exponentially stable stationary solutions for stochastic evolution equations and their perturbation....
    • 14. Caraballo, T., Lu, K.: Attractors for stochastic lattice dynamical systems with a multiplicative noise. Front. Math. China 3, 317–335...
    • 15. Caraballo, T., Morillas, F., Valero, J.: Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz...
    • 16. Caraballo, T., Morillas, F., Valero, J.: Random attractors for stochastic lattice systems with nonLipschitz nonlinearity. J. Diff. Eqs....
    • 17. Carrol, T.T.L., Pecora, L.M.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)
    • 18. Carvalho, A.N., Langa, J.A., Robinson, J.C.: Non-autonomous dynamical systems. Disc. Cont. Dyn. Sys-B 20, 703–747 (2015)
    • 19. Chate, H., Courbage , M.: (Eds.), Lattice Systems. Physica D 103 1-4 (1997), 1-612
    • 20. Cheban, D., Mammana, C.: Relation between different types of global attractors of set-valued nonautonomous dynamical systems. Set-Valued...
    • 21. Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics, Amer. Math. Soc., (2002)
    • 22. Chepyzhov, V.V., Vishik, M.I.: Attractors of non-autonomous dynamical systems and their dimension. J. Math. Pures Appl. 73, 279–333 (1994)
    • 23. Chow, S.N.: Lattice dynamical systems Dynamical System. Lecture Notes in Mathematics (Springer, Berlin), 2003, pp. 1-102
    • 24. Chow, S.N., Mallet-Paret, J.: Pattern formation and spatial chaos in lattice dynamical systems: I. IEEE Trans. Circuits Syst. 42, 746–751...
    • 25. Chow, S.N., Mallet-Paret, J., Van Vleck, E.S.: Pattern formation and spatial chaos in spatially discrete evolution equations. Rand. Comput....
    • 26. Chua, L.O., Roska, T.: The CNN paradigm. IEEE Trans. Circuits Syst. 40, 147–156 (1993)
    • 27. Chua, L.O., Yang, Y.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)
    • 28. Chua, L.O., Yang, Y.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35, 1273–1290 (1988)
    • 29. Crauel, H., Debussche, A., Flandoli, F.: Random Attractors. J. Dyn. Diff. Eqns. 9, 307–341 (1997)
    • 30. Crauel, H., Flandoli, F.: Attractors for random dynamical systems. Probab. Th. Re. Fields 100, 365–393 (1994)
    • 31. Cui, H., Cunha, A.C., Langa, J.A.: Finite-dimensionality of tempered random uniform attractors. J. Nonlinear Sci. 32, 13 (2022). https://doi.org/10.1007/s00332-021-09764-8
    • 32. Cui, H., Langa, J.A.: Uniform attractors for non-autonomous random dynamical systems. J. Differ. Equ. 263, 1225–1268 (2017)
    • 33. Flandoli, F., Schmalfuß, B.: Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise. Stoch. Stoch. Rep....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno