Ir al contenido

Documat


Infinitely Many Sign-Changing Solutions for the Nonlinear Schrödinger-Poisson System with Super 2-linear Growth at Infinity

  • Shuai Wang [1] ; Xing-Ping Wu [1] ; Chun-Lei Tang [1]
    1. [1] Southwest University

      Southwest University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate the sign-changing solutions to the following Schrödinger-Poisson system {−Δu+V(x)u+λϕ(x)u=f(u), −Δϕ=u2, x∈R3, x∈R3, where λ>0 is a parameter and f is super 2-linear at infinity. By using the method of invariant sets of descending flow and a multiple critical points theorem, we prove that this system possesses infinitely many sign-changing solutions for any λ>0 .

  • Referencias bibliográficas
    • 1. Alves, C.O., Souto, M.A.S.: Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains. Z. Angew. Math....
    • 2. Ambrosetti, A.: On Schrödinger-Poisson systems. Milan J. Math. 76, 257–274 (2008). https://doi.org/ 10.1007/s00032-008-0094-z
    • 3. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008). https://doi.org/10.1142/S021919970800282X
    • 4. Azzollini, A., d’Avenia, P., Pomponio, A.: On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann. Inst....
    • 5. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)....
    • 6. Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 1–21 (2001)....
    • 7. Bartsch, T., Pankov, A., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on RN . Comm. Partial Differ...
    • 8. Bartsch, T., Liu, Z.: On a superlinear elliptic p-Laplacian equation. J. Differ Equ. 198, 149–175 (2004). https://doi.org/10.1016/j.jde.2003.08.001
    • 9. Bartsch, T., Liu, Z., Weth, T.: Sign-changing solutions of superlinear Schrödinger equations. Comm. Partial Differ Equ. 29, 25–42 (2004)
    • 10. Bartsch, T., Liu, Z., Weth, T.: Nodal solutions of a p-Laplacian equation. Proc. Lond. Math. Soc. 91, 129–152 (2005). https://doi.org/10.1112/S0024611504015187
    • 11. Bartsch, T.,Wang, Z.-Q.: On the existence of sign-changing solutions for semilinear Dirichlet problems. Topol. Methods Nonlinear Anal....
    • 12. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)
    • 13. Benci, V., Fortunato, D.: Variational methods in nonlinear field equations. Springer, (2014). https:// doi.org/10.1007/978-3-319-06914-2
    • 14. Chen, S., Tang, X.: Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in R3. Z. Angew. Math. Phys....
    • 15. d’Avenia, P., Pietro, L., Siciliano, G.: Nonautonomous Klein-Gordon-Maxwell systems in a bounded domain. Adv. Nonlinear Anal. 3(S1), s37–s45...
    • 16. Gu, L.-H., Jin, H., Zhang, J.-J.: Sign-changing solutions for nonlinear Schrödinger-Poisson systems with subquadratic or quadratic growth...
    • 17. Guo, L.: Sign-changing solutions for fractional Schrödinger-Poisson system in R3. Appl. Anal. 98, 2085–2104 (2019). https://doi.org/10.1080/00036811.2018.1448074
    • 18. Guo, H.: Nonexistence of least energy nodal solutions for Schrödinger-Poisson equation. Appl. Math. Lett. 68, 135–142 (2017). https://doi.org/10.1016/j.aml.2016.12.016
    • 19. Guo, H., Wang, T.: A note on sign-changing solutions for the Schrödinger-Poisson system. Electron. Res. Arch. 28, 195–203 (2020). https://doi.org/10.3934/era.2020013
    • 20. Ianni, I.: Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem. Topol. Methods Nonlinear Anal. 41, 365–386 (2013)
    • 21. Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a LandesmanLazer-type problem set on RN . Proc. R....
    • 22. Ji, C., Fang, F., Zhang, B.: Least energy sign-changing solutions for the nonlinear Schrödinger-Poisson system. Electron. J. Differ Equ....
    • 23. Jiang, Y., Zhou, H.: Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential. Sci. China Math. 57,...
    • 24. Jin, Q.F.: Multiple sign-changing solutions for nonlinear Schrödinger equations with potential well. Appl. Anal. 99(15), 2555–2570 (2020)....
    • 25. Kim, S., Seok, J.: On nodal solutions of the nonlinear Schrödinger-Poisson equations. Commun. Contemp. Math. 14, 1250041 (2012). https://doi.org/10.1142/S0219199712500411
    • 26. Li, G., Peng, S., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system. Commun. Contemp. Math. 12,...
    • 27. Liang, Z., Xu, J., Zhu, X.: Revisit to sign-changing solutions for the nonlinear Schrödinger-Poisson system in R3. J. Math. Anal. Appl....
    • 28. Lieb, E., Loss, M.: Analysis, graduate studies in mathematics. vol. 14. AMS. (1997)
    • 29. Lions, E., Simon, B.: The Thomas-Fermi theory of atoms, moleules and solids. Adv. Math. 23, 22–116 (1977). https://doi.org/10.1016/0001-8708(77)90108-6
    • 30. Lions, P.: Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys. 109, 33–97 (1987)
    • 31. Liu, Z., Sun, J.: Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J....
    • 32. Liu, Z., Wang, Z.-Q., Zhang, J.: Infinitely many sign-changing solutions for the nonlinear SchrödingerPoisson system. Ann. Mat. Pura Appl....
    • 33. Liu, J., Liao, J.-F., Tang, C.-L.: Ground state solution for a class of Schrödinger equations involving general critical growth term....
    • 34. Liu, J., Liu, X., Wang, Z.-Q.: Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc. Var. Partial Differ Equ....
    • 35. Nie, J.J., Li, Q.Q.: Multiplicity of sign-changing solutions for a supercritical nonlinear Schrödinger equation. Appl. Math. Lett. 109,...
    • 36. Qian, A., Liu, J., Mao, A.: Ground state and nodal solutions for a Schrödinger-Poisson equation with critical growth. J. Math. Phys. 59,...
    • 37. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006). https://doi.org/10.1016/j.jfa.2006.04.005
    • 38. Ruiz, D.: On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration. Mech. Anal. 198,...
    • 39. Teng, K.M.: Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent....
    • 40. Vaira, G.: Ground states for Schrödinger-Poisson type systems. Ric. Mat. 2, 263–297 (2011). https:// doi.org/10.1007/s11587-011-0109-x
    • 41. Wang, D., Zhang, H., Guan, W.: Existence of least-energy sign-changing solutions for SchrödingerPoisson system with critical growth. J....
    • 42. Wang, Z., Zhou, H.-S.: Sign-changing solutions for the nonlinear Schrödinger-Poisson system in R3. Calc. Var. Partial. Differ. Equ. 52,...
    • 43. Wu, Y.Z., Huang, Y.S.: Sign-changing solutions for Schrödinger equations with indefinite superlinear nonlinearities. J. Math. Anal. Appl....
    • 44. Yang, X.Y., Tang, X.H., Zhang, Y.P.: Positive, negative, and sign-changing solutions to a quasilinear Schrödinger equation with a parameter....
    • 45. Zhang, J., Squassina, M.: Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity. Adv. Nonlinear Stud....
    • 46. Zhao, L., Zhao, F.: On the existence of solutions for the Schrödinger-Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008). https://doi.org/10.1016/j.jmaa.2008.04.053
    • 47. Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential....
    • 48. Zhong, X.-J., Tang, C.-L.: Ground state sign-changing solutions for a Schrödinger-Poisson system with a 3-linear growth nonlinearity....
    • 49. Zhong, X.-J., Tang, C.-L.: Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in R3. Nonlinear...
    • 50. Zou, W.M., Schechter, M.: Critical point theory and its applications. Springer, New York (2006)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno