Ir al contenido

Documat


Existence of Solutions of a Superlinear Elliptic System at Resonance

  • Ruyun Ma [1] ; Mantang Ma [1] ; Yan Zhu [1]
    1. [1] Northwest Normal University

      Northwest Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We are concerned with the existence of solution for elliptic system ⎧⎩⎨⎪⎪−Δu=λu+δv+f(u+)+k1(x)−Δv=δu+γv+g(v+)+k2(x)u=v=0in Ω,in Ω,on ∂Ω, where Ω⊂RN , N≥3 , is a smooth bounded domain, s+:=max{s,0} , λ,δ and γ are real parameters such that max{λ,γ}>0 and δ>0 . By topological degree arguments, we show the existence of nontrivial solutions for above system under certain superlinear growth conditions on f, g and an one-sided Landesman−Lazer condition on k1,k2 . Also, a priori bound for the solutions are obtained by adapting the method of Brezis−Turner.

  • Referencias bibliográficas
    • 1. Brezis, H., Turner, R.: On a class of superlinear elliptic problems. Comm. Partial Differ. Equ. 2, 601–614 (1977)
    • 2. Caldwell, S., Castro, A., Shivaji, R., Unsurangsie, S.: Positive solutions for classes of multiparameter elliptic semipositone problems....
    • 3. Cañada, A., Magal, P., Montero, J.A.: Optimal control of harvesting in a nonlinear elliptic system arising from population dynamics. J....
    • 4. Chabrowski, J., Yang, J.: Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent....
    • 5. Corrêa, F.J.: On the existence and multiplicity of positive solutions of a semilinear elliptic system. An. Acad. Bras. Ciênc. 60, 266–270...
    • 6. Costa, D.G., Magalhães, C.A.: A variational approach to subquadratic perturbations of elliptic systems. J. Differen. Equ. 111, 103–122...
    • 7. Cuesta, M., De Coster, C.: Superlinear critical resonant problems with small forcing term. Cal. Var. Partial Differen. Equ. 54, 349–363...
    • 8. Cuesta, M., De Figueiredo, D.G., Srikanth, P.N.: On a resonant−superlinear elliptic problem. Calc. Var. Partial Differen. Equ. 17, 221–233...
    • 9. De Figueiredo, D.G., Massabò, I.: Semilinear elliptic equations with the primitive of the nonlinearity interacting with the first eigenvalue....
    • 10. De Figueiredo, D.G., Yang, J.: Critical superlinear Ambrosetti−Prodi problems. Topol. Methods Nonlinear Anal. 14, 59–80 (1999)
    • 11. De Paiva, F.O., Presoto, A.E.: Semilinear elliptic problems with asymmetric nonlinearities. J. Math. Anal. Appl. 409, 254–262 (2014)
    • 12. De Paiva, F.O., Rosa, W.: Neumann problems with resonance in the first eigenvalue. Math. Nachr. 290, 2198–2206 (2017)
    • 13. Ferreira, F.M., De Paiva, F.O.: On a resonant and superlinear elliptic system. Dis. Contin. Dyn. Syst. 39, 5775–5784 (2019)
    • 14. Henaoui, O.: An elliptic system modeling two subpopulations. Nonlinear Anal. Real World Appl. 13, 2447–2458 (2012)
    • 15. Kannan, R., Ortega, R.: Landesman−Lazer conditions for problems with “one-side unbounded” nonlinearities. Nonlinear Anal. 9, 1313–1317...
    • 16. Kyritsi, S., Papageorgiou, N.S.: Multiple solutions for superlinear Dirichlet problems with an indefinite potential. Annali Math. Pura...
    • 17. Lazer, A.C., McKenna, P.J.: On steady state solutions of a system of reaction-diffusion equations from biology. Nonlinear Anal. 6, 523–530...
    • 18. Mancini, G., Mitidieri, E.: Positive solutions of some coercive-anticoercive elliptic systems. Ann. Fac. Sci. Toulouse Math. 8, 257–292...
    • 19. Motreanu, D., Motreanu, V., Papageorgiou, N.S.: Multiple solutions for Dirichlet problems which are superlinear at +∞ and sublinear...
    • 20. Papageorgiou, N.S., Radulescu, V.D.: Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity. Contemp....
    • 21. Perera, K.: Existence and multiplicity results for a Sturm−Liouville equation asymptotically linear at −∞ and superlinear at +∞. Nonlinear...
    • 22. Recova, L., Rumbos, A.: An asymmetric superlinear elliptic problem at resonance. Nonlinear Anal. 112, 181–198 (2015)
    • 23. Torre, F., Ruf, B.: Multiplicity of solutions for a superlinear p-Laplacian equation. Nonlinear Anal. 73, 2132–2147 (2010)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno