Ir al contenido

Documat


A Hybrid System For Pandemic Evolution Prediction

  • Lilia Muñoz [1] [7] ; María Alonso-García [2] ; Vladimir Villarreal [1] [7] Árbol académico ; Guillermo Hernández [3] ; Mel Nielsen [1] ; Francisco Pinto-Santos ; Amilkar Saavedra [1] ; Mariana Areiza [1] ; Juan Montenegro [1] ; Inés Sittón-Candanedo [7] ; Yen Caballero-González [7] ; Saber Trabelsi [4] ; Juan M. Corchado [2] [3] [5] [6] Árbol académico
    1. [1] Universidad Tecnológica de Panamá

      Universidad Tecnológica de Panamá

      Panamá

    2. [2] AIR Institute

      AIR Institute

      Carbajosa de la Sagrada, España

    3. [3] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

    4. [4] Texas A&M University at Qatar

      Texas A&M University at Qatar

      Catar

    5. [5] Osaka Institute of Technology

      Osaka Institute of Technology

      Kita Ku, Japón

    6. [6] Universiti Malaysia Kelantan

      Universiti Malaysia Kelantan

      Malasia

    7. [7] Centro de Estudios Multidisciplinarios en Ciencia, Ingeniería y Tecnología (CEMCIT-AIP), Panamá
  • Localización: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, ISSN-e 2255-2863, Vol. 11, Nº. 1, 2022, págs. 111-128
  • Idioma: inglés
  • DOI: 10.14201/adcaij.28093
  • Enlaces
  • Resumen
    • The areas of data science and data engineering have experienced strong advances in recent years. This has had a particular impact on areas such as healthcare, where, as a result of the pandemic caused by the COVID-19 virus, technological development has accelerated. This has led to a need to produce solutions that enable the collection, integration and efficient use of information for decision making scenarios. This is evidenced by the proliferation of monitoring, data collection, analysis, and prediction systems aimed at controlling the pandemic. To go beyond current epidemic prediction possibilities, this article proposes a hybrid model that combines the dynamics of epidemiological processes with the predictive capabilities of artificial neural networks. In addition, the system allows for the introduction of additional information through an expert system, thus allowing the incorporation of additional hypotheses on the adoption of containment measures.

  • Referencias bibliográficas
    • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow,...
    • Azouani, A., Olson, E., and Titi, E. S., 2014. Continuous data assimilation using general interpolant observables. Journal of Nonlinear Science,...
    • Bauch, C. T., 2005. Imitation dynamics predict vaccinating behaviour. Proceedings of the Royal Society B: Biological Sciences, 272(1573):1669–1675.
    • Bertozzi, A. L., Franco, E., Mohler, G., Short, M. B., and Sledge, D., 2020. The challenges of modeling and forecasting the spread of COVID-19....
    • Casas, E. and Mateos, M., 2017. Optimal control of partial differential equations. In Computational mathematics, numerical analysis and applications,...
    • Castillo Ossa, L. F., Chamoso, P., Arango-Lépez, J., Pinto-Santos, F., Isaza, G. A., Santa-Cruz-González, C., Ceballos-Marquez, A., Hernández,...
    • Chimmula, V. K. R. and Zhang, L., 2020. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos, Solitons &...
    • Corchado, J. M., Chamoso, P., Hernández, G., Gutierrez, A. S. R., Camacho, A. R., González-Briones, A., Pinto-Santos, F., Goyenechea, E.,...
    • Daza-Torres, M. L., Capistrán, M. A., Capella, A., and Christen, J. A., 2021. Bayesian sequential data assimilation for COVID-19 forecasting....
    • Engbert, R., Rabe, M. M., Kliegl, R., and Reich, S., 2021. Sequential data assimilation of the stochastic SEIR epidemic model for regional...
    • Hethcote, H. W., 1989. Three basic epidemiological models. In Applied mathematical ecology, pages 119–144. Springer.
    • Kabir, K. A. and Tanimoto, J., 2019. Dynamical behaviors for vaccination can suppress infectious disease-A game theoretical approach. Chaos,...
    • Kabir, K. A. and Tanimoto, J., 2020. Evolutionary game theory modelling to represent the behavioural dynamics of economic shutdowns and shield...
    • Kermack, W. O. and McKendrick, A. G., 1927. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London....
    • Kermack, W. O. and McKendrick, A. G., 1932. A contribution to the mathematical theory of epidemics, part. II. Proceedings of the Royal Society...
    • Kermack, W. O. and McKendrick, A. G., 1933. A contribution to the mathematical theory of epidemics, part. III. Proceedings of the Royal Society...
    • Kuperman, M. and Wio, H., 1999. Front propagation in epidemiological models with spatial dependence. Physica A: Statistical Mechanics and...
    • Le Gruenwald, S. and Jain, S. G., 2021. Leveraging Artificial Intelligence in Global Epidemics. Elsevier.
    • Li, H., Peng, R., and Wang, Z. A., 2018. On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death...
    • Markowich, P. A., Titi, E. S., and Trabelsi, S., 2016. Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended...
    • Mondaini, R. P., 2020. Trends in Biomathematics: Modeling Cells, Flows, Epidemics, and the Environment. Springer.
    • Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., and Acharya, U. R., 2020. Automated detection of COVID-19 cases using...
    • Perc, M., Gorišek Miksi?, N., Slavinec, M., and Stožer, A., 2020. Forecasting covid-19. Frontiers in Physics, 8:127.
    • Presentaciones Covid-19 - Ministerio de Salud, Gobierno de Panamá Ministerio de Salud, Gobierno de Panamá http://www.minsa.gob.pa/informacion-salud/presentaciones-covid-19-detalles....
    • Suo, J. and Li, B., 2020. Analysis on a diffusive SIS epidemic system with linear source and frequency-dependent incidence function in a heterogeneous...
    • Tanimoto, J., 2021. Sociophysics Approach to Epidemics, volume 23. Springer Nature.
    • Tröltzsch, F., 2010. Optimal control of partial differential equations: theory, methods, and applications, volume 112. American Mathematical...
    • Wang, S., Yang, X., Li, L., Nadler, P., Arcucci, R., Huang, Y., Teng, Z., and Guo, Y., 2020. A Bayesian Updating Scheme for Pandemics: Estimating...
    • Yousaf, M., Zahir, S., Riaz, M., Hussain, S. M., and Shah, K., 2020. Statistical analysis of forecasting COVID-19 for upcoming month in Pakistan....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno