Ir al contenido

Documat


Strong Vector Equilibrium Problems in Topological Vector Spaces Via KKM Maps

  • A.P Farajzadeh [1] ; A Amini-Harandi [3] ; D O’Regan [3] ; R.P Agarwal [2] Árbol académico
    1. [1] Razi University

      Razi University

      Irán

    2. [2] Florida Institute of Technology

      Florida Institute of Technology

      Estados Unidos

    3. [3] University of Shahrekord Department of Mathematics
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 12, Nº. 1, 2010, págs. 219-230
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462010000100018
  • Enlaces
  • Resumen
    • español

      En este artículo, establecemos algunos resultados de existencia para problemas de equilibrio strong vector en espacios vectoriales topológicos (abreviadamente, SVEP). La salubilidad del SVEP es presentada usando el lema de Fan-KKM. Estos resultados dan una respuesta positiva a problemas abiertos propuestos por Chen y Hon y generalizan varios resultados importantes en la literatura reciente.

    • English

      In this paper, we establish some existence results for strong vector equilibrium problems (for short, SVEP) in topological vector spaces. The solvability of the SVEP is presented using the Fan-KKM lemma. These results give a positive answer to an open problem proposed by Chen and Hou and generalize many important results in the recent literature.

  • Referencias bibliográficas
    • Ansari, Q.H. (2000). Vector equilibrium problems and vector variational inequalities. Vector variational inequalities and vector equilibria:...
    • Bianchi, M,Pini, R. (2005). Coercivity conditions for equilibrium problems. J. Optim. Theory Appl. 124. 79-92
    • Chen, G.Y,Hou, S.H. (2000). Vector variational inequalities and vector equilibria. kluwer publishers. Dordrecht.
    • Fakhar, M,Zafarani, J. (2005). Generalized vector equilibrium problems for pseudomonotone multivalued bifunctions. J. Optim. Theory Appl....
    • Fan, K. (1984). Some properties of convex sets related to fixed point theorems. Math. Ann. 266. 519-537
    • Fang, Y.P,Huang, N.J. (2002). On the strong vector variational inequalities: Research Report. Department of Mathematics, Sichuan University....
    • Fang, Y.P,Huang, N.J. (2006). Strong vector variational inequalities in Banach spaces. Appl. Math. Lett. 19. 362-368
    • Giannessi, F. (2000). Vector variational inequalities and vector equilibria. Mathematical theories. Kluwer.
    • Giannessi, F. (1980). Variational inequality and Complementarity problems. John Wiley and Sons. New York.
    • Iusem, A.N,Sosa, W. (2003). New existence results for equilibrium problems. Nonlinear Anal. 52. 621-635
    • Oettli, W,Schlager, D. (1998). Existence of equilibria for monotone multivalued mappings. Math. Meth. Oper. Res. 48. 219-228
    • Park, S. (2000). Fixed points, intersections theorem, variational inequalities, and equilibrium theorems. Inter. J. Math. Math. Sci. 2. 73-93
    • Yang, F,Wu, C,He, Q. (2006). Applications of Ky Fan's inequality on -compact set to variational inclusion and n- person game theory. J....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno