Ir al contenido

Documat


Well-Posedness Results for Anisotropic Nonlinear Elliptic Equations with Variable Exponent and L¹-Data

  • Stanislas Ouaro [1]
    1. [1] University of Ouagadougou

      University of Ouagadougou

      Burkina Faso

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 12, Nº. 1, 2010, págs. 133-148
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462010000100012
  • Enlaces
  • Referencias bibliográficas
    • Alvino, A,Boccardo, L,Ferone, V,Orsina, L,Trombetti, G. (2003). Existence results for non-linear elliptic equations with degenerate coercivity....
    • Bendahmane, M,Karlsen, K.H. (2006). Anisotropic nonlinear elliptic systems with measure data and anisotropic harmonic maps into spheres. Electron....
    • Bénilan, Ph,Boccardo, L,Gallouët, T,Gariepy, R,Pierre, M,Vazquez, J.L. (1995). An L¹-theory of existence and uniqueness of solutions of nonlinear...
    • Bénilan, Ph,Brezis, H,Crandall, M.G. (1975). A semilinear equation in L¹(R)N. Ann. Scula. Norm. Sup. Pisa. 2. 523-555
    • Chen, Y,Levine, S,Rao, M. (2006). Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66. 1383-1406
    • Diening, L. (2002). Theoretical and Numerical Results for Electrorheological Fluids, PhD. thesis. University of Frieburg.
    • Diening, L. (2004). Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(.) and W1,p(.),. Math. Nachr. 268....
    • Edmunds, D.E,Rakosnik, J. (1992). Density of smooth functions in Wk,p(x) (Ω. Proc. R. Soc. A. 437. 229-236
    • Edmunds, D.E,Rakosnik, J. (2000). Sobolev embeddings with variable exponent. Studia Math. 143. 267-293
    • Edmunds, D.E,Rakosnik, J. (2002). Sobolev embeddings with variable exponent, II, Math. Nachr. 246-247
    • El Hamidi, A. (2004). Existence results to elliptic systems with nonstandard growth conditions. J. Math. Anal. Appl. 300. 30-42
    • Fan, X,Zhang, Q. (2003). Existence of solutions for p(x)-Laplacian Dirichlet problem. onlinear Anal. 52. 1843-1852
    • Harjulehto, P,Hästö, P,Koskenova, M,Varonen, S. (2006). The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary...
    • Hudzik, H. (1976). On generalized Orlicz-Sobolev space. Funct. Approximatio Comment. Math. 4. 37-51
    • Koné, B,Ouaro, S,Traoré, S. (2009). Weak solutions for anisotropic nonlinear elliptic equations with variable exponent. Electron J. Differ....
    • Kovacik, O,Rakosnik, J. (1991). On spaces Lp(x) and W1,p(x),. Czech. Math. J.,. 41. 592-618
    • Leray, J,Lions, J.L. (1965). Quelques résultats de Visik sur les problémes elliptiques nonlinéaires par les méthodes de Minty et Browder....
    • Mihailescu, M,Pucci, P,Radulescu, V. (2008). Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J....
    • Mihailescu, M,Radulescu, V. (2006). A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids....
    • Musielak, J. (1983). Orlicz Spaces and modular spaces: Lecture Notes inMathematics. springer. Berlin.
    • Orlicz, W. (1931). Über konjugierte Exponentenfolgen. Studia Math. 3. 200-212
    • Pfeiffer, C,Mavroidis, C,Bar-Cohen, Y,Dolgin, B. (1999). Electrorheological fluid based force feedback device. in Proc. 1999 SPIE Telemanipulator...
    • Rajagopal, K.R,Ruzicka, M. (2001). Mathematical modelling of electrorheological fluids. Continuum Mech. Thermodyn. 13. 59-78
    • Ruzicka, M. (2000). Electrorheological fluids: modelling and mathematical theory. Springer-Verlag. Berlin.
    • Sanchon, M,Urbano, J.M. (2009). Entropy solutions for the p(x)-Laplace Equation. Trans. Amer. Math. Soc. 361. 6387-6405
    • Sharapudinov, I. (1978). On the topology of the space Lp(t)([0, 1]),. Math. Zametki. 26. 613-632
    • Tsenov, I.V. (1961). Generalization of the problem of best approximation of a function in the space L8. Uch. Zap. Dagestan Gos. Univ. 7. 25-37
    • Winslow, W.M. (1949). Induced Fibration of Suspensions. J. Applied Physics. 20. 1137-1140
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno