Ir al contenido

Documat


Brill-Noether Theories for Rank 1 Sheaves on

  • E Ballico [1]
    1. [1] University of Trento

      University of Trento

      Trento, Italia

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 12, Nº. 1, 2010, págs. 103-114
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462010000100010
  • Enlaces
  • Resumen
    • español

      Nosotros discutimos aquí algunos problemas de Brill-Noether para hazes de rango 1 sobre curvas estables.

    • English

      Here we discuss some Brill-Noether problems for rank 1 sheaves on stable curves.

  • Referencias bibliográficas
    • Artamkin, I.V. (2004). Canonical maps of pointed nodal curves. Sb. Math. 195. 615-642
    • Ballico, E. (2009). Low degree spanned sheaves with pure rank 1 on reducible curves. International Journal of Pure and Applied Mathematics....
    • Ballico, E. (2009). Gonality for stable curves and their maps with a smooth curve as their target. Central European Journal of Mathematics....
    • Bayer, D,Eisenbud, D. (1991). Graph curves. with an appendix by Sung Won Park, Adv. Math. 86. 1-40
    • Buchweitz, R.-O,Greuel, G.-M. (1980). The Milnor number and deformations of complex curve singularities. Invent. Math. 58. 241-281
    • Caporaso, L. (1994). A compactification of the universal Picard variety over the moduli space of stable curves. J. Amer. Math. Soc.,. 7. 589-660
    • Caporaso, L. Brill-Noether theory of binary curves: arXiv:math/0807.1484.
    • Catanese, F. (1982). Pluricanonical - Gorenstein - curves, Enumerative geometry and classical algebraic geometry. 51-95
    • Catanese, F,Franciosi, M,Hulek, K,Reid, M. (1999). Embeddings of curves and surfaces. goya Math. J. 154. 185-220
    • Ciliberto, C,Harris, J,Miranda, R. (1988). On the surjectivity of the Wahl map. Duke Math. J. 57. 829-858
    • Eisenbud, D,Harris, J. (1986). Limit linear series: basic theory. Invent. Math. 85. 337-371
    • Eisenbud, D,Koh, J,Stillman, M,Harris, J. (1988). Amer. J. Math. 110. 513-539
    • Esteves, E,Medeiros, N. (2002). Limit canonical systems on curves with two components. Invent. Math. 149. 267-338
    • Farkas, G. Birational aspects of Mg, arXiv:math/08100702.
    • Greuel, G.-M,Knörrer, H. (1985). Einfache Kurvensingularitäten und torsionfreie Moduln. Math. Ann. 270. 417-425
    • Harris, J,Mumford, D. (1980). On the Kodaira dimension of the moduli space of curves. Invent. Math. 67. 23-86
    • Melo, M. Compactified Picard stacks over Mg, arXiv:math/0710.3008, Math. Z. (to appear.
    • Osserman, B. (2008). Linear series and the existence of branched covers. Compositio Math. 144. 89-106
    • Pandharipande, R. (1996). A compactification of the universal moduli space of slope-semistable vector bundles over. J. Amer. Math. Soc. 9....
    • Sernesi, E. (2006). Deformations of algebraic schemes. Springer. Berlin.
    • Seshadri, C. (1982). Fibrés vectoriels sur les courbes algébriques. Astérisque. 96.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno