Ir al contenido

Documat


Quenching for Discretizations of a Nonlocal Parabolic Problem with Neumann Boundary Condition

  • Théodore K Boni [1] ; Diabaté Nabongo [2]
    1. [1] Institut National Polytechnique Houphouët-Boigny
    2. [2] Université d’Abobo-Adjamé Département de Mathématiques et Informatiques
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 12, Nº. 1, 2010, págs. 23-40
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462010000100004
  • Enlaces
  • Resumen
    • español

      En este artículo mostramos, bajo algunas condiciones, que la solución de una forma discreta de un problema parabólico no local se sofoca en tiempo finito y estimamos su tiempo de sofocamiento numérico. Probamos también que el tiempo de sofocamiento numérico converge par un real cuando el tamaño de la malla tiende a cero. Finalmente damos algunos resultados computacionales para ilustrar nuestros análisis.

    • English

      In this paper, under some conditions, we show that the solution of a discrete form of a nonlocal parabolic problem quenches in a finite time and estimate its numerical quenching time. We also prove that the numerical quenching time converges to the real one when the mesh size goes to zero. Finally, we give some computational results to illustrate our analysis.

  • Referencias bibliográficas
    • Andren, F,Mazon, J.M,Rossi, J.D,Toledo, J. (2008). The Neumann problem for nonlocal nonlinear diffusion equations. J. Evol. Equat. 8. 189-215
    • Andren, F,Mazon, J.M,Rossi, J.D,Toledo, J. A nonlocal p-Laplacian evolution equation with Neumann boundary conditions: Preprint.
    • Bates, P,Chmaj, A. (1999). An intergrodifferential model for phase transitions: stationary solutions in higher dimensions. J. Statistical...
    • Bates, P,Chmaj, A. (1999). A discrete convolution model for phase transitions. Arch. Ration. Mech. Anal.. 150. 281-305
    • Bates, P,Han, J. (2005). The Dirichlet boundary problem for a nonlocal Cahn-Hilliard equation. J. Math. Anal. Appl. 311. 289-312
    • Bates, P,Han, J. (2005). The Neumann boundary problem for a nonlocal Cahn-Hilliard equation. J. Diff. Equat. 212. 235-277
    • Bates, P,Fife, P,Wang, X. (1997). Travelling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138. 105-136
    • Boni, T.K. (2000). On quenching of solution for some semilinear parabolic equations of second order. Bull. Belg. Math. Soc. 7. 73-95
    • Boni, T.K. (2001). Extinction for discretizations of some semilinear parabolic equations. C. R. Acad. Sci. Paris, Sér. I, Math.,. 333. 795-800
    • Carrilo, C,Fife, P. (2005). Spacial effects in discrete generation population models. J. Math. Bio. 50. 161-188
    • Chasseigne, E,Chaves, M,Rossi, J.D. (2006). Asymptotic behavior for nonlocal diffusion equations whose solutions develop a free boundary....
    • Chen, X. (1997). Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equations. Adv. Diff. Equat. 2....
    • Chen, X.Y,Matano, H. (1989). Convergence, asymptotic periodicity and finite point blow up in one-dimensional semilinear heat equations. J....
    • Cortazar, C,Elgueta, M,Rossi, J.D. (2005). A non-local diffusion equation whose solutions develop a free boundary. Ann. Henry Poincaré. 6....
    • Cortazar, C,Elgueta, M,Rossi, J.D. (2008). How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems....
    • Cortazar, C,Elgueta, M,Rossi, J.D,Wolanski, N. (2007). Boundary fluxes for nonlocal diffusion. J. Diff. Equat. 234. 360-390
    • Fife, P. (2003). Some nonclassical trends in parabolic and parabolic-like evolutions: Trends in nonlinear analysis. Springer. Berlin.
    • Fife, P,Wang, X. (1998). A convolution model for interfacial motion: the generation and propagation of internal layers in higher space dimensions....
    • Friedman, A,McLeod, B. (1985). Blow-up of positive solution of semilinear heat equations. Indiana Univ. Math. J. 34. 425-447
    • Ignat, L.I,Rossi, J.D. (2007). A nonlocal convection-diffusion equation. J. Funct. Anal. 251. 399-437
    • Nabongo, D,Boni, T.K. (2008). Quenching time of solutions for some nonlinear parabolicequations. An. St. Univ. Ovidius Constanta Math. 16....
    • Nabongo, D,Boni, T.K. (2008). Quenching for semidiscretization of semilinear heat equation with Dirichlet and Neumann boundary conditions....
    • Nabongo, D,Boni, T.K. (2008). Quenching for semidiscretization of a heat equation with singular boundary condition. Asympt. Anal. 59. 27-38
    • Nabongo, D,Boni, T.K. Blow-up time for a nonlocal diffusion problem with Dirichlet boundary conditions, Comm. Anal. Geom., To appear.
    • Nabongo, D,Boni, T.K. Numerical quenching for a semilinear parabolic equation: Math. Modelling and Anal., To appear.
    • Protter, M.H,Weinberger, H.F. (1957). Maximum principle in differential equations. Prentice Hall. Englewood Cliffs, NJ.
    • Perez-LLanos, M,Rossi, J.D. Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term: Nonl. Anal. TMA,...
    • Walter, W. (1964). Differential-und Integral-Ungleucungen. Springer. Berlin.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno