Ir al contenido

Documat


On Semisubmedian Functions and Weak Plurisubharmonicity

  • Chia-chi Tung [1]
    1. [1] Minnesota State University Dept. of Mathematics and Statistics
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 12, Nº. 2, 2010, págs. 235-259
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462010000200015
  • Enlaces
  • Resumen
    • español

      En esta nota son estudiadas intrínsicamente las funciones subarmonicas y plurisubarmonicas sobre un espacio complejo. Para aplicaciones, subarmonicidad es caracterizada mas eficientemente en términos de propiedades que necesitan ser verificadas solamente localmente en un subconjunto analítico delgado; estas aplicaciones incluyen la desigualdad del valor-submedio, la monotonicidad esférica (respectivamente, sólida), bien como subarmonicidad debil. Varios resultados de Gunning [9, K and L] son extendibles vía regularidad a espacios complejos. En particular, plurisubarmonicidad (sobre un espacio normal) importa esencialmente para plurisubarmonicidad débil regularizada y similarmente para subarmoniciada (sobre un espacio general). Son dados un lema de Hartogs generalizado y un criterio de constancia para ciertas aplicaciones matriz-valuada.

    • English

      In this note subharmonic and plurisubharmonic functions on a complex space are studied intrinsically. For applications subharmonicity is characterized more effectually in terms of properties that need be verified only locally off a thin analytic subset; these include the submean-value inequalities, the spherical (respectively, solid) monotonicity, near as well as weak subharmonicity. Several results of Gunning [9, K and L] are extendable via regularity to complex spaces. In particular, plurisubharmonicity amounts (on a normal space) essentially to regularized weak plurisubharmonicity, and similarly for subharmonicity (on a general space). A generalized Hartogs’ lemma and constancy criteria for certain matrix-valued mappings are given.

  • Referencias bibliográficas
    • Behnke, H,Grauert, H,Behnke, H,Grauert, H. (1960). Analysis in non-compact complex spaces,Analytic functions. Princeton Univ. Press. Princeton,...
    • Bochner, S,Martin, W. (1948). Several complex variables. Princeton University Press. Princeton, New Jersey.
    • D’Angelo, John P. (2002). Inequalities from complex analysis. The Carus Math. Mono.. 28.
    • Demailly, Jean-Pierre. (1992). Courants positifs et théorie de l’intersection. Gaz. des Math. No. 53. 131-159
    • Fornæss, J,Narasimhan, R. (1980). The Levi problem on complex spaces with singularities. Math. Ann. 248. 47-72
    • Freitas, P,Matos, J. P. (2001). Characterization of harmonic and subharmonicfunctions via meanvalue properties. arXiv:math/010607801v1. 1-10
    • Gilbarg, D,Trudinger, N. S. (1977). Elliptic partial differential equations of second order. Springer-Verlag. Berlin-Heidelberg-New York.
    • Grauert, H,Remmert, R. (1956). Plurisubharmonischen Funktionen in komplexen Räume. Math. Zeit. 65. 175-194
    • Gunning, R. C. (1990). Introduction to holomorphic functions of several variables. function theory. Wadsworth, Belmont, California.
    • Hörmander, L. (1966). An introduction to complex analysis in several variables. D. Van Nostrand. Princeton, New Jersey.
    • Kellog, W. (1953). Foundations of potential theory.
    • Lelong, P. (1968). Fonctionnelles analytiques et fonctions entiérs (n variables. L’Univ. de Montréal.
    • Lelong, P. (1969). Plurisubharmonic functions and positive differential forms. Gordon and Breach. New York, London, Paris.
    • Lieb, E. H,Loss, M. (1996). Analysis,Graduate Studies in Math. Amer.Math. Soc.,.
    • Narasimhan, R. (1961). The Levi problem for complex spaces. Math. Ann. 142. 355-362
    • Narasimhan, R. (1966). Introduction to the theory of analytic spaces. Springer. Berlin-Heidelberg-New York.
    • Radó, T. (1937). Subharmonic functions: Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer. Berlin.
    • Radó, T,Reichelderfer, P. (1955). Continuous transformations in analysis. Springer-Verlag. Berlin-Heidelberg.
    • Royden, H. L. (1988). Real analysis. Macmillan. New York, London.
    • Shabat, B. V. (1992). Introduction to complex analysis. Amer. Math. Soc.
    • Stoll, W. (1966). The multiplicity of aholomorphic map. Invent. Math. 2. 15-58
    • Stoll, W. (1977). Value distribution on parabolicspaces. Springer. Berlin- Heidelberg-New York.
    • Tung, C. (1979). The first main theoremof value distribution on complex spaces,Memoiredell’Accademia Nazionale dei Lincei. Serie VIII. 91-263
    • Tung, C. (2007). Semi-harmonicity, integral means and Euler type vector fields. Advances in Applied Clifford Algebras. 17. 555-573
    • Tung, C. (2009). Integral products, Bochner-Martinelli transforms and applications. Taiwanese Journal of Mathematics. 13. 1583-1608
    • Vladmirov, V. (1966). Methods of the theory of functions of many complex variables. The MIT Press. Cambridge and London.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno