Ir al contenido

Documat


Existence of Periodic Solutions for a Class of Second-Order Neutral Differential Equations with Multiple Deviating Arguments

  • CHENGJUN GUO [1] ; DONAL O’REGAN [2] ; RAVI P AGARWAL [3] Árbol académico
    1. [1] University of Technology

      University of Technology

      Rusia

    2. [2] National University of Ireland

      National University of Ireland

      Irlanda

    3. [3] Florida Institute of Technology

      Florida Institute of Technology

      Estados Unidos

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 12, Nº. 3, 2010, págs. 153-165
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462010000300010
  • Enlaces
  • Resumen
    • español

      Usando el teorema del punto fijo de Kranoselskii y el teorema de continuación de Mawhin establecemos la existencia de soluciones periódicas de una ecuación diferencial neutral de segundo orden con argumento de desviación multiple.

    • English

      Using Kranoselskii fixed point theorem and Mawhin’s continuation theorem we establish the existence of periodic solutions for a second order neutral differential equation with multiple deviating arguments.

  • Referencias bibliográficas
    • CHEN, Y.S. (1992). The existence of periodic solutions for a class of neutral differential difference equations. Bull. Austral. Math. Soc....
    • CHEN, Y.S. (1992). The existence of periodic solutions of the equation x′(t) = −f (x(t), x(t−r). J. Math. Anal. Appl. 163. 227-237
    • GAINES, R.E,MAWHIN, J.L. (1977). Coincidence degree and nonlinear differential equation. Springer-Verlag.
    • GUO, Z.M,YU, J.S. (2005). Multiplicity results for periodic solutions to delay differential difference equations via critical point theory....
    • GUO, C.J,GUO, Z.M. (2009). Existence of multiple periodic solutions for a class of threeorder neutral differential equations. Acta. Math....
    • GUO, C.J,GUO, Z.M. (2009). Existence of multiple periodic solutions for a class of secondorder delay differential equations. Nonlinear Anal-B:...
    • HALE, J.K. (1977). Theory of functional differential equations. Springer-Verlag.
    • KAPLAN, J.L,YORKE, J.A. (1974). Ordinary differential equations which yield periodic solution of delay equations. J. Math. Anal. Appl. 48....
    • LI, J.B,HE, X.Z. (1999). Proof and generalization of Kaplan-Yorke’s conjecture on periodic solution of differential delay equations. Sci....
    • LI, Y.X. (2002). Positive periodic solutions of nonlinear second order ordinary differential equations. Acta Math. Sini. 45. 482-488
    • LU, S.P. (2009). Existence of periodic solutions for a p-Laplacian neutral functional differential equation. Nonlinear. Anal. 70. 231-243
    • LI, J.W,WANG, G.Q. (2005). Sharp inequalities for periodic functions. Applied Math. ENote. 5. 75-83
    • SHU, X.B,XU, Y.T,HUANG, L.H. (2008). Infinite periodic solutions to a class of secondorder Sturm-Liouville neutral differential equations....
    • WANG, G.Q,YAN, J.R. (2004). Existence of periodic solutions for second order nonlinear neutral delay equations. Acta Math. Sini.,. 47. 379-384
    • XU, Y.T,GUO, Z.M. (2001). Applications of a Zp index theory to periodic solutions for a class of functional differential equations. J. Math....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno