Ir al contenido

Documat


The Semigroup and the Inverse of the Laplacian on the Heisenberg Group

  • APARAJITA DASGUPTA [1] ; M.W WONG [2]
    1. [1] Indian Institute of Science Department of Mathematics
    2. [2] York University Department of Mathematics and Statistics
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 12, Nº. 3, 2010, págs. 83-97
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462010000300006
  • Enlaces
  • Resumen
    • español

      Mediante descomposición del Laplaceano sobre el grupo de Heisenberg en una familia de operadores diferenciales parciales parametrizados Lt, t ∈ R \{0}, y usando transformada de Fourier-Wigner parametrizada, damos fórmulas y estimativas para la continuidad fuerte del semigrupo generado por Lt, y la inversa de Lt. Usando esas fórmulas y estimativas obtenemos estimativas de Sobolev para el semigrupo a un parámetro y la inversa del Laplaceano.

    • English

      By decomposing the Laplacian on the Heisenberg group into a family of parametrized partial differential operators Lt ,t ∈ R \ {0}, and using parametrized Fourier-Wigner transforms, we give formulas and estimates for the strongly continuous one-parameter semigroup generated by Lt, and the inverse of Lt . Using these formulas and estimates, we obtain Sobolev estimates for the one-parameter semigroup and the inverse of the Laplacian.

  • Referencias bibliográficas
    • DASGUPTA, A,WONG, M.W. (2007). Weyl transforms and the inverse of the sub-Laplacian on the Heisenberg group, in Pseudo-Differential Operators:...
    • DASGUPTA, A,WONG, M.W. (2009). Weyl transforms and the heat equation for the sub- Laplacian on the Heisenberg group, in New Developments in...
    • DAVIES, E.B. (1980). One-Parameter Semigroups. Academic Press.
    • DAVIES, E.B. (2007). Linear Operators and their Spectra. Cambridge University Press.
    • FRIEDMAN, A. (1969). Partial Differential Equations: Holt. Reinhart and Winston.
    • FURUTANI, K. (1996). The heat kernel and the spectrum of a class of manifolds. Comm. Partial Differential Equations. 21. 423-438
    • GAVEAU, B. (1977). Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta...
    • HILLE, E,PHILLIPS, R.S. (1974). Functional Analysis and Semi-groups: Third Printing of Revised Version of 1957. American Mathematical Society....
    • IANCU, G.M,WONG, M.W. (1996). Global solutions of semilinear heat equations in Hilbert spaces. Abstr. Appl. Anal. 1. 263-276
    • KIM, J,WONG, M.W. (2006). Positive definite temperature functions on the Heisenberg group. Appl. Anal. 85. 987-1000
    • SHUBIN, M.A. (1987). Pseudodifferential Operators and Spectral Theory. Springer-Verlag.
    • STEIN, E.M. (1993). Harmonic Analysis: Real-Variable Methods: Orthogonality, and Oscillatory Integrals. Princeton University Press.
    • WONG, M.W. (1998). Weyl Transforms. Springer-Verlag.
    • WONG, M.W. (2005). Weyl transforms, the heat kernel and Green function of a degenerate elliptic operator. Ann. Global Anal. Geom. 28. 271-283
    • WONG, M.W. (2005). The heat equation for the Hermite operator on the Heisenberg group. Hokkaido Math. J. 34. 393-404
    • YOSIDA, K. (1995). Functional Analysis: Reprint of Sixth Edition. Springer-Verlag.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno