Ir al contenido

Documat


On The Group of Strong Symplectic Homeomorphisms

  • AUGUSTIN BANYAGA [1]
    1. [1] Pennsylvania State University

      Pennsylvania State University

      Borough of State College, Estados Unidos

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 12, Nº. 3, 2010, págs. 49-69
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462010000300004
  • Enlaces
  • Resumen
    • español

      Generalizamos la "topología hamiltoniano" sobre isotopias hamiltonianas para una "topología simpléctica" intrinseca en el espacio de isotopias simplécticas. Nosotros usamos esto para definir el grupo SSympeo(M,ω) de homeomorfismos simplécticos fuertes, el qual generaliza el grupo Hameo(M,ω) de homeomorfismos hamiltonianos introducido por Oh y Müller. El grupo SSympeo(M,ω) es conexo por arcos, es contenido en la componente identidad de Sympeo(H,ω); este contiene Hameo(M,ω) como un subgrupo normal y coincide con este cuando M es simplemente conexa. Finalmente su subgrupo conmutador [SSympeo(M,ω), SSympeo(M,ω)] es contenido en Hameo(M,ω).

    • English

      We generalize the "hamiltonian topology" on hamiltonian isotopies to an intrinsic "symplectic topology" on the space of symplectic isotopies. We use it to define the group SSympeo (M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,ω) of hamiltonian homeomorphisms introduced by Oh and Müller. The group SSympeo(M,ω) is arcwise connected, is contained in the identity component of Sympeo(M,ω); it contains Hameo(M,ω) as a normal subgroup and coincides with it when M is simply connected. Finally its commutator subgroup [SSympeo(M,ω), SSympeo(M,ω)] is contained in Hameo(M,ω).

  • Referencias bibliográficas
    • BANYAGA, A. (2008). On the group of symplectic homeomorphisms. .R. Acad. Sci. Paris Ser. 1. 867-872
    • BANYAGA, A. (2010). A Hofer-like metric on the group of symplectic diffeomorphisms. Contemp. Math., Vol.. 512. 1-23
    • BANYAGA, A. (1978). Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. Comment. Math. Helv. 53. 174-227
    • BANYAGA, A. (1997). The structure of classical diffeomorphisms groups. Kluwer Academic Publisher’s Group. Dordrecht, The Netherlands.
    • BANYAGA, A,SPAETH, P. (2008). The group of contact homeomorphisms. Preprint.
    • BANYAGA, A,SPAETH, P. The C0 contact topology and the group of contact homeomorphisms.
    • ELIASHBERG, Y.M. (1987). A theorem on the structure of wave fronts and its application in symplectic topology. Funct. Anal. and Its Applications....
    • FATHI, A. (1980). Structure of the group of homeomorphisms preserving a good measure on a compact manifold. Ann. Scient. Ec. Norm. Sup.,....
    • GROMOV, M. (1986). Partial differential relations: Ergebnisse der Mathematik. Springer.
    • HOFER, H,ZEHNDER, E. (1994). Symplectic invariants and hamiltonian dynamics: Birkhauser Advanced Texts. Birkhauser Verlag.
    • LALONDE, F,MCDUFF, D,POLTEROVICH, L. (1999). Topological rigidity of hamiltonian loops and quantum homology. Invent. math. 135. 369-385
    • MÜLLER, S. (2008). The group of hamiltonian homeomorphisms in the L∞ norm. J. Korean Math.Soc. 45. 1769-1784
    • OH, Y-G,MÜLLER, S. (2007). The group of hamiltonian homeomorphisms and C0- symplectic topology. J. Symp. Geometry. 5. 167-225
    • WARNER, F. (1971). Foundations of differentiable manifolds and Lie groups: Scott. Foresman and Company.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno