Ir al contenido

Documat


Measure of Noncompactness and Nondensely Defined Semilinear Functional Differential Equations with Fractional Order

  • MOUFFAK BENCHOHRA [2] ; GASTON M N’GUÉRÉKATA [1] ; DJAMILA SEBA [3]
    1. [1] Morgan State University

      Morgan State University

      Estados Unidos

    2. [2] Université de Sidi Bel-Abbès Laboratoire de Mathématiques
    3. [3] Université de Boumerdès Département de Mathématiques
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 12, Nº. 3, 2010, págs. 35-48
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462010000300003
  • Enlaces
  • Resumen
    • español

      Este artículo es dedicado al estudio de existencia de soluciones integrales para ecuaciones diferenciales funcionales semilineales envolviendo la derivada de Riemann-Liouville en un espacio de Banach. Los argumentos se basan en un teorema de punto fijo de Mönch y la técnica de no compacidad.

    • English

      This paper is devoted to study the existence of integral solutions for a nondensely defined semilinear functional differential equations involving the Riemann-Liouville derivative in a Banach space. The arguments are based upon Mönch’s fixed point theorem and the technique of measures of noncompactness.

  • Referencias bibliográficas
    • AGARWAL, R.P,BENCHOHRA, M,HAMANI, S. (2008). Boundary value problems for differential inclusions with fractional order. Adv. Stud. Contemp.Math....
    • AGARWAL, R.P,MEEHAN, M,O’REGAN, D. (2001). Fixed Point Theory and Applications. Cambridge University Press. Cambridge.
    • ALVÀREZ, J.C. (1985). Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces. Rev. Real....
    • ARENDT, W. (1987). Vector valued Laplace transforms and Cauchy problems. Israel J. Math. 59. 327-352
    • BANAS, K,DHAGE, B.C. (2008). Global asymptotic stability of solutions of a fractional integral equation. Nonlinear Anal. 69. 1945-1952
    • BANAS, J,GOEBEL, K. (1980). Measures of Noncompactness in Banach Spaces. Marcel Dekker. New York.
    • BANAS, J,SADARANGANI, K. (2008). On some measures of noncompactness in the space of continuous functions. Nonlinear Anal. 68. 377-383
    • BELMEKKI, M,BENCHOHRA, M. (2008). Existence results for fractional order semilinear functional differential equations. Proc. A. Razmadze Math....
    • BELMEKKI, M,BENCHOHRA, M,GORNIEWICZ, L. (2008). Semilinear functional differential equations with fractional order and infinite delay. Fixed...
    • BELMEKKI, M,BENCHOHRA, M,GÒRNIEWICZ, L,NTOUYAS, S.K. (2008). Existence results for semilinear perturbed functional differential inclusions...
    • BENCHOHRA, M,GRAEF, J.R,HAMANI, S. (2008). Existence results for boundary value problems with nonlinear fractional differential equations....
    • BENCHOHRA, M,HAMANI, S,NTOUYAS, S.K. (2008). Boundary value problems for differential equations with fractional order. Surv. Math. Appl. 3....
    • BENCHOHRA, M,HENDERSON, J,SEBA, D. (2008). Measure of noncompactness and fractional differential equations in Banach spaces. Commun. Appl....
    • CHANG, Y.-K,NIETO, J.J. (2009). Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput....
    • DA PRATO, G,SINESTRARI, E. (1987). Differential operators with non-dense domains. Ann. Scuola. Norm. Sup. Pisa Sci. 14. 285-344
    • DIETHELM, K,FORD, N.J. (2002). Analysis of fractional differential equations. J. Math. Anal. Appl. 265. 229-248
    • FURATI, K.M,TATAR, N.-EDDINE. (2005). Behavior of solutions for a weighted Cauchytype fractional differential problem. J. Fract. Calc. 28....
    • FURATI, K.M,TATAR, N.-EDDINE. (2005). Power type estimates for a nonlinear fractional differential equation. Nonlinear Anal. 62. 1025-1036
    • GAUL, L,KLEIN, P,KEMPFLE, S. (1991). Damping description involving fractional operators. Mech. Systems Signal Processing. 5. 81-88
    • GLOCKLE, W.G,NONNENMACHER, T.F. (1995). A fractional calculus approach of selfsimilar protein dynamics. Biophys. J. 68. 46-53
    • GUO, D,LAKSHMIKANTHAM, V,LIU, X. (1996). Nonlinear Integral Equations in Abstract Spaces. Kluwer Academic Publishers Group. Dordrecht.
    • HALE, J.K,LUNEL, S.V. (1993). Introduction to Functional -Differential Equations. Springer-Verlag. New York.
    • JARADAT, O.K,AL-OMARI, A,MOMANI, S. (2008). Existence of mild solution for fractional semilinear initial value problems. Nonlinear Anal. 69....
    • KELLERMANN, H,HIEBER, M. (1989). Integrated semigroup. J. Funct. Anal. 84. 160-180
    • KILBAS, A.A,SRIVASTAVA, H.M,TRUJILLO, J.J. (2006). Theory and Applications of Fractional Differential Equations. Elsevier Science B.V. Amsterdam....
    • KOLMANOVSKII, V,MYSHKIS, A. (1999). Introduction to the Theory and Applications of Functional-Differential Equations. Kluwer Academic Publishers....
    • LAKSHMIKANTHAM, V,LEELA, S,VASUNDHARA, J. (2009). Theory of Fractional Dynamic Systems. Cambridge Academic Publishers. Cambridge.
    • LAKSHMIKANTHAM, V,DEVI, J.V. (2008). Theory of fractional differential equations in a Banach space. Eur. J. Pure Appl. Math. 1. 38-45
    • MAINARDI, F. (1997). Fractals and Fractional Calculus in Continuum Mechanics. Springer-Verlag. Wien.
    • METZLER, F,SCHICK, W,KILIAN, H.G,NONNENMACHER, T.F. (1995). Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys....
    • MILLER, K.S,ROSS, B. (1993). An Introduction to the Fractional Calculus and Differential Equations. John Wiley. New York.
    • MÖNCH, H. (1980). Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal....
    • MOPHOU, G.M,NAKOULIMA, O,N’GUÉRÉKATA, G.M. (2010). Existence results for some fractional differential equations with nonlocal conditions....
    • MOPHOU, G.M,N’GUÉRÉKATA, G.M. (2009). Existence of mild solution for some fractional differential equations with nonlocal conditions. Semigroup...
    • MOPHOU, G.M,N’GUÉRÉKATA, G.M. (2009). On integral solutions of some fractional differential equations with nondense domain. Nonlinear Analysis,...
    • MOPHOU, G.M,N’GUÉRÉKATA, G.M. (2009). Mild solutions for semilinear fractional differential equations. Electron. J. Diff. Equ., Vol. 1-9
    • MÖNCH, H,VON HARTEN, G.F. (1982). On the Cauchy problem for ordinary differential equations in Banach spaces. Archiv. Math. Basel. 39. 153-160
    • PAZY, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag. New York.
    • PODLUBNY, I. (1999). Fractional Differential Equations. Academic Press. San Diego.
    • SAMKO, S.G,KILBAS, A.A,MARICHEV, O.I. (1993). Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach. Yverdon.
    • SZUFLA, S. (1986). On the application of measure of noncompactness to existence theorems. Rend. Sem. Mat. Univ. Padova. 75. 1-14
    • WU, J. (1996). Theory and Applications of Partial Functional Differential Equations. Springer- Verlag. New York.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno