Ir al contenido

Documat


Degree theory for the sum of VMO maps and maximal monotone maps

  • Yuqing Chen [1] ; Donal O’Regan [2] ; Ravi P Agarwal [3] Árbol académico
    1. [1] University of Technology

      University of Technology

      Rusia

    2. [2] National University of Ireland

      National University of Ireland

      Irlanda

    3. [3] Florida Institute of Technology

      Florida Institute of Technology

      Estados Unidos

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 13, Nº. 2, 2011, págs. 119-126
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462011000200006
  • Enlaces
  • Referencias bibliográficas
    • Boutet de Monvel-Berthier, A,Georgescu, V,Purice, R. (1991). A boundary value problem related to the Ginzburg-Landau model. Comm. Math. Phys....
    • Bourgain, J,Brezis, H,Mironescu, P. (2000). Lifting in Sobolev spaces. J. Analyse Math. 37-86
    • Bourgain, J,Brezis, H,Mironescu, P. (2001). in Optimal Control and Partial Differential Equations. a volume in honour of A. Bensoussan¡¯s...
    • Bourgain, J,Brezis, H,Mironescu, P. (2004). H1/2 maps into the circle: minimal connections, lifting, and the Ginzburg-Landau equation. Publications...
    • Bourgain, J,Brezis, H,Mironescu, P. (2005). Lifting, Degree and Distributional Jacobian Revisited. Comm. Pure Appl. Math. 529-551
    • Bourgain, J,Brezis, H,Nguyen, H.-M. (2005). A new estimate for the topological degree. C. R. Acad. Sc.. Paris.
    • Brezis, H. (1973). Operateurs Maximaux monotones.
    • Brezis, H,Coron, J. M. (1983). Large solutions for harmonic maps in two dimensions. Comm. Math. Phys. 203-215
    • Brezis, H. (1997). Degree theory: old and new, in Topological Nonlinear Analysis II: Degree, Singu-larity and Variations. 87-108
    • Brezis, H,Li, Y. (2001). Topology and Sobolev spaces. J. Funct. Anal. 321-369
    • Brezis, H,Mironescu, Li, P,Nirenberg, L. (1999). Degree and Sobolev spaces Topological methods in Nonlinear Analysis. 181-190
    • Brezis, H,Nirenberg, L. (1995). Degree theory and BMO, Part I: compact manifolds without boundaries Selecta Math. 197-263
    • Brezis, H,Nirenberg, L. (1996). Degree Theory and BMO, Part II: Compact Manifolds with Boundaries Selecta Math. 1-60
    • O’Regan, D,Cho, J,Chen, Q. (2006). Topological Degree Theory and Applications. Chapman and Hall/CRC Press.
    • Chen, Y.Q,O'Regan, D. (2009). On the homotopy property of topological degree for maximal monotone mappings. Appl. Math. Comput. 373-377
    • Chen, Y.Q,O'Regan, D,Wang, F.L,Agarwal, R. (2009). A note on degree theory for maximal monotone mappings in finite dimensional spaces....
    • Esteban, M.J,Miiller, S. (1992). Sobolev maps with integer degree and applications to Skyrme’s problem. Proc. Roy. Soc. London A. 197-201
    • Giaquinta, M,Modica, G,Soucek, J. (1994). Remarks on the degree theory. J. Funct. Anal.. 172-200
    • Hang, F.B,Lin, F.H. (2003). Topology of Sobolev mappings II. Acta Math. 55-107
    • John, F,Nirenberg, L. (1961). On functions of bounded mean oscillation. Comm. Pure Appl. Math. 415-426
    • Korevaar, J. (1999). On a question of Brezis and Nirenberg concerning the degree of circle maps Selecta Math. 107-122
    • Mironescu, P,Pisante, A. (2004). A variational problem with lack of compactness for H1/2(S1, S1) maps of prescribed degree. J. Funct. Anal....
    • Sarason, D. (1975). Functions of vanishing mean oscillation Trans. Amer. Math. Soc. 391-405
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno