Ir al contenido

Documat


Differential forms versus multi-vector functions in Hermitean Clifford analysis

  • F Brackx [1] ; H De Schepper [1] ; V Souček [2]
    1. [1] Ghent University

      Ghent University

      Arrondissement Gent, Bélgica

    2. [2] Charles University in Prague

      Charles University in Prague

      Chequia

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 13, Nº. 2, 2011, págs. 85-117
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462011000200005
  • Enlaces
  • Resumen
    • español

      Se presentan las similitudes entre las álgebras de formas diferenciales complejas y de las funciones de álgebras de Clifford complejas con valores de múltiples vectores aplicados en una región abierta del espacio euclidiano de dimensión par.

    • English

      Similarities are shown between the algebras of complex differential forms and of complex Clifford algebra-valued multi-vector functions in an open region of Euclidean space of even dimension.

  • Referencias bibliográficas
    • Brackx, F,Bureš, J,De Schepper, H,Eelbode, D,Sommen, F,Souček, V. (2007). Fundaments of Hermitean Clifford Analysis. Part I: Complex structure....
    • Brackx, F,Bureš, J,De Schepper, H,Eelbode, D,Sommen, F,Souček, V. (2007). Fundaments of Hermitean Clifford Analysis. Part II: Splitting of...
    • Brackx, F,De Knock, B,De Schepper, H. (2008). A matrix Hilbert transform in Hermitean Clifford analysis. J. Math. Anal. Appl. 344. 1068-1078
    • Brackx, F,De Knock, B,De Schepper, H,Sommen, F. (2009). On Cauchy and Martinelli- Bochner integral formulae in Hermitean Clifford analysis....
    • Brackx, F,Delanghe, R,Sommen, F. (1982). Clifford Analysis. Pitman Publishers. Boston-London-Melbourne.
    • Brackx, F,Delanghe, R,Sommen, F. (2005). Differential forms and/or multivector functions. Cubo. 7. 139-169
    • Brackx, F,De Schepper, H,Eelbode, D,Souček, V. (2010). The Howe dual pair in Hermitean Clifford analysis. accepted for publication in Rev....
    • Brackx, F,De Schepper, H,Sommen, F. (2007). A theoretical framework for wavelet analysis in a Hermitean Clifford setting. Comm. Pure Appl....
    • Brackx, F,De Schepper, H,Sommen, F. (2008). The Hermitian Clifford analysis toolbox. Appl. Clifford Algebras. 18. 451-487
    • Brackx, F,De Schepper, H,Souček, V. On the Structure of Complex Clifford Algebra Adv. Appl. Clifford Alg. DOI: 10.1007/s0006-010-0270-4.
    • Brackx, F,De Schepper, H,Souček, V. Hermitean Clifford Analysis on Kählerian manifolds (in preparation.
    • Damiano, A,Eelbode, D,Sabadini, I. (2009). Invariant syzygies for the Hermitian Dirac operator. Math.
    • Delanghe, R,Lávička, R,Souček, V. On polynomial solutions of generalized Moisil-Théodoresco systems and Hodge-de Rham systems (arXiv: 0908.0842....
    • Delanghe, R,Lávička, R,Souček, V. The Fischer decomposition for Hodge-de Rham systems in Euclidean spaces (arXiv: 1012.4994.
    • Delanghe, R,Sommen, F,Souček, V. (1992). Clifford Algebra and Spinor-Valued Functions. Kluwer Academic Publishers. Dordrecht.
    • Eelbode, D. (2007). Stirling numbers and spin-Euler polynomials. Exp. Math. 16. 55-66
    • Gilbert, J,Murray, M. (1991). Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press. Cambridge.
    • Gürlebeck, K,Habetha, K,Sprössig, W. (2008). Holomorphic Functions in the Plane and n-dimensional Space. Birkhäuser Verlag. Basel.
    • Maurin, K. (1980). Analysis, part II. D. Reidel Publishing CompanyPWN-Polish Scientific Publishers. Dordrecht - Boston - LondonWarszawa.
    • Michelsohn, M. L. (1980). Clifford and Spinor Cohomology of Kähler Manifolds. American Journal of Mathematics. 102. 1083-1146
    • Moroianu, A. (2007). Lectures on Kähler geometry. Cambridge University Press. Cambridge.
    • Porteous, I. R.. (1969). Topological Geometry. Van Nostrand Reinhold Company. London - New York - Toronto - Melbourne.
    • Sabadini, I,Sommen, F. (2002). Hermitian Clifford analysis and resolutions. Math. Meth. Appl. Sci.. 25. 1395-1414
    • von Westenholz, C. (1978). Differential Forms in Mathematical Physics. Stud. Math. Appl., vol. 3.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno