Ir al contenido

Documat


Linear Convergence Analysis for General Proximal Point Algorithms Involving (H,η)- Monotonicity Frameworks

  • Ram U Verma [1]
    1. [1] Texas A & M University at Kingsville Department of Mathematics
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 13, Nº. 3, 2011, págs. 185-196
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462011000300010
  • Enlaces
  • Resumen
    • español

      Se desarrolla un marco general para el algoritmo de punto proximal generalizado, basado en la noción de (H,r)- monotonia. Se examina el analisis de convergencia lineal para el algoritmo de punto proximal generalizado en el contexto de la resolucion de una clase de inclusiones no lineales variacional. Los resultados obtenidos generalizan y unifican una amplia gama de problemas en el contexto de lograr la convergencia lineal de los algoritmos punto proximal.

    • English

      General framework for the generalized proximal point algorithm, based on the notion of (H,r)- monotonicity, is developed. The linear convergence analysis for the generalized proximal point algorithm to the context of solving a class of nonlinear variational inclusions is examined, The obtained results generalize and unify a wide range of problems to the context of achieving the linear convergence for proximal point algorithms.

  • Referencias bibliográficas
    • Agarwal, R. P.,Verma, R. U.. (2010). Inexact A-proximal point algorithm and applications to nonlinear variational inclusion problems. Journal...
    • Bertsekas, D. P.. (1982). Constrained Optimization and Lagrange Multiplier Methods. Academic Press. New York.
    • Douglas, J.,Rachford, H. H.. (1956). On the numerical solution of heat conduction problems in two and three space variables. Transactions...
    • Eckstein, J.. (1989). Splitting methods for monotone operators with applications to parallel optimization: Doctoral dissertation. Department...
    • Eckstein, J.. (1993). Nonlinear proximal point algorithm using Bregman functions. with applications to convex programming, Mathematics ofOperations...
    • Eckstein, J.. (1998). Approximation iterations in Bregman-function-based proximal algorithm. Mathematical Programming. 83. 113-123
    • Eckstein, J.,Bertsekas, D. P.. (1992). On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators....
    • Eckstein, J.,Ferris, M. C.. (1999). Smooth methods of multipliers for complementarity problems. Mathematical Programming. 86. 65
    • Fang, Y. P.,Huang, N. J.. (2004). H- monotone operators and system of variational inclusions. Communications on Applied Nonlinear Analysis....
    • Fang, Y. P.,Huang, N. J.,Thompson, H. B.. (2005). A new system of variational inclusions with (H,n)- monotone operators. Computers and Mathematics...
    • Ferris, M. C.. Finite termination of the proximal point algorithm. Mathematical Programming. 50. 359-366
    • Jin, M. M.. Perturbed algorithm and stability for strongly monotone nonlinear quasi-variational inclusions involving H- accretive operators....
    • Jin, M. M.. Iterative algorithm for a new system of nonlinear set-valued variational inclusions involving (H,n)- monotone mappings.
    • Lan, H. Y.. (2006). A class of nonlinear (A,n)- monotone operator inclusion problems with relaxed cocoercive mappings. Advances in Nonlinear...
    • Lan, H. Y.,Kim, J. H.,Cho, Y. J.. On a new class of nonlinear A-monotone multivalued variational inclusions.
    • Lan, H. Y.. New resolvent operator technique for a class of general nonlinear (A,n)- equations in Banach spaces.
    • Liu, Z.,Ume, J. S.,Kang, S. M.. (2002). Generalized nonlinear variational-like inequalities in reflexive Banach spaces. Journal of Optimization...
    • Martinet, B.. (1970). Regularisation d'inequations variationnelles par approximations successives. Rev. Francaise Inform. Rech. Oper....
    • Moudafi, A.. (2002). Mixed equilibrium problems: Sensitivity analysis and algorithmic aspect. Computers and Mathematics with Applications....
    • Moudafi, A.. (2006). Proximal methods for a class of relaxed nonlinear variational inclusions. Advances in Nonlinear Vriational Inequalities....
    • Pang, J. -S.,Horst, R,Pardalos, P. (1995). Complementarity problems: Handbook of Global Optimization. Kluwer Academic Publishers. Boston.
    • Robinson, S. M.. (1999). Composition duality and maximal monotonicity. Mathematical Programming. 85. 1-13
    • Robinson, S. M.. (1999). Linear convergence of epsilon-subgradient descent methods for a class of convex functions. Mathematical Programming....
    • Rockafellar, R. T.. (1970). On the maximal monotonicity of subdifferential mappings. Journal of Mathematics. 33. 209
    • Rockafellar, R. T.. (1976). Monotone operators and the proximal point algorithm. SIAM Journal of Control and Optimization. 14. 877-898
    • Rockafellar, R. T.. (1976). Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Mathematics ofOperations...
    • Rockafellar, R. T.,Wets, R. J-B.. (1998). Variational Analysis,. Springer-Verlag. Berlin.
    • Solodov, M. V.,Svaiter, B. F.. (2000). An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman...
    • Tossings, P.. (1994). The perturbed proximal point algorithm and some of its applications ,. Applied Mathematics and Optimization. 29. 125-159
    • Tseng, P.. (1991). Applications of a splitting algorithm to decomposition in convex programming and variational inequalities,. SIAM Journal...
    • Tseng. (1997). Alternating projection-proximal methods for convex programming and variational inequalities,. SIAM Journal ofOptimization....
    • Tseng, P.. (2000). A modified forward-backward splitting method for maximal monotone mappings,. SIAM Journal of Control and Optimization....
    • Verma, R. U.. (2006). New class of nonlinear A- monotone mixed variational inclusion problems and resolvent operator technique,. Journal ofComputational...
    • Verma, R. U.. (2006). Nonlinear A- monotone variational inclusion systems and the resolvent operator technique,. Journal ofApplied Functional...
    • Verma, R. U.. (2006). A- monotonicity and its role in nonlinear variational inclusions,. Journal of Optimization Theory and Applications....
    • Verma, R. U.. (1997). A fixed-point theorem involving Lipschitzian generalized pseudo- contractions,. Proceedings ofthe Royal Irish Academy....
    • Verma, R. U.. New approach to the n - proximal point algorithm and nonlinear variational inclusion problems,.
    • Zeidler, E.. (1990). Nonlinear Functional Analysis and its Applications II/B,. Springer-Verlag. New York.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno