Ir al contenido

Documat


On the solution of generalized equations and variational inequalities

  • Ioannis K Argyros [1] ; Saïd Hilout [2]
    1. [1] Universidad Nacional Autónoma de México

      Universidad Nacional Autónoma de México

      México

    2. [2] Laboratoire de Mathématiques et Applications, Bd. Pierre et Marie Curie Poitiers University
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 13, Nº. 1, 2011, págs. 45-60
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462011000100004
  • Enlaces
  • Resumen
    • español

      Uko y Argyros estudian en [18] un teorema tipo-Kantorovich en el existencia y unicidad de la solución de una ecuación generalizada de la forma 𝓕(𝓤) + 𝓖(𝓤) ∋ 0, donde f es una función Fréchet-diferenciable, y g es un operador monotono máximo definido en un espacio de Hilbert. Las condiciones de convergencia suficientes son más débiles que los correspondientemente dadas en la literatura para el teorema de Kantorovich en un espacio de Hilbert. Sin embargo, la convergencia ha demostrado ser sólo lineal. En este estudio, mostramos en las mismas condiciones, la ecuación cuadrática en lugar de la lineal convergente de la iteración generalizada de Newton involucradas.

    • English

      Uko and Argyros provided in [18] a Kantorovich-type theorem on the existence and uniqueness of the solution of a generalized equation of the form 𝓕 (𝓤)+ 𝓖(𝓤) ∋ 0, where f is a Fréchet-differentiable function, and g is a maximal monotone operator defined on a Hilbert space. The sufficient convergence conditions are weaker than the corresponding ones given in the literature for the Kantorovich theorem on a Hilbert space. However, the convergence was shown to be only linear. In this study, we show under the same conditions, the quadratic instead of the linear convergenve of the generalized Newton iteration involved.

  • Referencias bibliográficas
    • Argyros, I.K. (2004). On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 11. 103-110
    • Argyros, I.K. (2004). A unifying local-semilocal convergence analysis and applications for twopoint Newton-like methods in Banach space. J....
    • Argyros, I.K,Chui, C.K,Wyutack, L. (2007). Computational Theory for iterative methods, Studies in Computational Mathematics. Elsevier. New...
    • Bonnans, J.F. (1994). Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl. Math. Optimiz. 29....
    • Dennis, J.E. (1969). On the Kantorovich hypotheses for Newton’s method. SIAM J. Numer. Anal. 6. 493-507
    • Gragg, W.B,Tapia, R.A. (1974). Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer. Anal. 11. 10-13
    • Harker, P.T,Pang, J.S. (1990). Finite dimensional variational inequality and nonlinear comple- mentarity problems: a survey of theory, algorithms...
    • Josephy, N.H. (1979). Newton’s method for generalized equations: Technical Report No. 1965. Mathematics Research Center, University of Wisconsin....
    • Kantorovich, L.V. (1948). On Newton’s method for functional equations (Russian. Doklady Akademii Nauk SSSR. 59. 1237-1240
    • Minty, G.J. (1973). Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29. 341-346
    • Minty, G.J. (1964). On the monotonicity of the gradient of a convex function. Pacific J. Math. 14. 243-247
    • Robinson, S.M. (1980). Strongly regular generalized equations. Math. Oper. Research. 5. 43-62
    • Robinson, S.M. (1982). Generalized equations. Springer. Berlin.
    • Solodov, M.V,Svaiter, B.F. (2000). A truly globally convergent Newton-type method for the monotone nonlinear complementarity problem. SIAM...
    • Stampacchia, G. (1964). Formes bilinéaires coercitives sur les ensembles convexes. C.R.A.S. de Paris. 258. 4413-4416
    • Uko, L.U. (1996). Generalized equations and the generalized Newton method. Math. Programming. 73. 251-268
    • Uko, L.U. (1992). On a class of general strongly nonlinear quasivariational inequalities. Revista di Matematica Pura ed Applicata. 11. 47-55
    • Uko, L.U,Argyros, I.K. Generalized equations, variational inequalities, and a weak Kan- torovich theorem, Numerical Algorithms.
    • Uko, L.U,Orozco, J.C. (2004). Some p-norm convergence results for Jacobi and Gauss-Seidel iterations. Revista Colombiana de Matemáticas. 38....
    • Verma, R.U. (2000). A class of projection-contraction methods applied to monotone variational inequalities. Appl. Math. Lett. 13. 55-62
    • Wang, Z,Shen, Z. (2004). Kantorovich theorem for variational inequalities. Applied Mathematics and Mechanics (English Edition. 25. 1291-1297
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno