Ir al contenido

Documat


Local energy decay for the wave equation with a time-periodic non-trapping metric and moving obstacle

  • Yavar Kian [1]
    1. [1] Centre de Physique Theorique CNRS-Luminy Case 907
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 14, Nº. 2, 2012, págs. 153-173
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462012000200008
  • Enlaces
  • Referencias bibliográficas
    • Bachelot, A,Petkov, V. (1987). Existence des opérateurs d'ondes pour les systemes hyperboliques avec un potentiel périodique en temps....
    • Bloom, C. O,Kazarinoff, N. D. (1974). Energy decays locally even if total energy grows algebraically with time. J. Differential Equation....
    • Bony, J-F,Petkov, V. (2004). Resonances for non trapping time-periodic perturbation. J. Phys. A: Math. Gen. 37. 9439-9449
    • Burq, N. (1998). Décroissance de l'énergie locale de l'équation des ondes pour le problme extérieur et absence de resonance au voisinage...
    • Burq, N. (2003). Global Strichartz estimates for non-trapping geometries: About an article by H.Smith and C.Sogge. Commun. PDE. 28. 1675-1683
    • Colombini, F,Petkov, V,Rauch, J. (2009). Exponential growth for the wave equation with compact time-periodic positive potential. Comm. Pure...
    • Colombini, F,Rauch, J. (2008). Smooth localised parametric resonance for wave equations. J.Reine Angew. Math. 616. 1-14
    • Cooper, J,Strauss, W. (1982). Scattering theory of waves by periodically moving bodies. J. Funct.Anal. 47. 180-229
    • Georgiev, V,Petkov, V. (1989). RAGE theorem for power bounded operators and decay of local energy for moving obstacles. Ann. Inst. H. Poincare...
    • Hormander, L. (1985). The analysis of linear partial differential operators III. Springer-Verlag.
    • Kian, Y. (2010). Strichartz estimates for the wave equation with a time-periodic non-trapping metric. Asymptotic Analysis. 68. 41-76
    • Kian, Y. (2010). Cauchy problem for semilinear wave equation with time-dependent metrics. Nonlinear Analysis. 73. 2204-2212
    • Kian, Y. (2010). Local energy decay in even dimensions for the wave equation with a time-periodic non-trapping metric and applications to...
    • Melrose, R. (1979). Singularities and energy decay in acoustical scattering. Duke Math. J. 46. 43-59
    • Melrose, R,Sjostrand, J. (1978). Singularities of boundary value problem. Comm. Pure Appl.Math. 31. 593-617
    • Morawetz, C,Ralston, J,Strauss, W. (1977). Decay of solutions of wave equations outside non-trapping obstacle. Comm. Pure Appl. Math. 30....
    • Metcalfe, J. L. (2004). Global Strichartz estimates for solutions to the wave equation exterior to a convex obstacle. Trans. Amer. Math. Soc....
    • Miyatake, S. (1973). Mixed problems for hyperbolic equation of second order. J. Math. Kyoto Univ. 13. 435-487
    • Smith, H. F,Sogge, C. (2000). Global Strichartz estimates for non-trapping perturbations of the Laplacian. Commun. PDE. 25. 2171-2183
    • Petkov, V. (1989). Scattering theory for hyperbolic operators.
    • Petkov, V. (2006). Global Strichartz estimates for the wave equation with time-periodic potentials. J. Funct. Anal. 235. 357-376
    • Popov, G,Rangelov, Ts. (1989). Exponential growth of the local energy for moving obstacles. Osaka J. Math. 26. 881-895
    • Tang, S-H,Zworski, M. (2000). Resonance expansions of scattered waves. Comm. Pure Appl.Math. 53. 1305-1334
    • Vainberg, B. (1975). On the short wave asymptotic behavior of solutions of stationary problems and the asymptotic behavior as t of solutions...
    • Vainberg, B. (1988). Asymptotic methods in Equation of mathematical physics. Gordon and Breach. New York.
    • Vainberg, B. (1993). On the local energy of solutions of exterior mixed problems that are periodic with respect to t. Trans. Moscow Math....
    • Vodev, G. (1999). On the uniform decay of local energy. Serdica Math. J. 25. 191-206
    • Vodev, G. (2004). Local energy decay ofsolutions to the wave equation for non-trapping metrics. Ark.Math. 42. 379-397
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno