Ir al contenido

Documat


Some generalized difference double sequence spaces defined by a sequence of Orlicz-functions

  • Kuldip Raj [1] ; Sunil K Sharma [1]
    1. [1] Shri Mata Vaishno Devi University School of Mathematics
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 14, Nº. 3, 2012, págs. 167-190
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462012000300011
  • Enlaces
  • Resumen
    • español

      En este artículo introducimos algunos espacios de sucesiones doble-diferencia generalizadas definidas por una sucesión de funciones de Orlicz. Estudiamos algunas propiedades topológicas y algunas relaciones de inclusión entre estos espacios. Además, hacemos un esfuerzo para estudiar estas propiedades en espacios n normados.

    • English

      In the present paper we introduce some generalized difference double sequence spaces defined by a sequence of Orlicz-functions. We study some topological properties and some inclusion relations between these spaces. We also make an effort to study these properties over n-normed spaces.

  • Referencias bibliográficas
    • Altay, B,Baar, F. (2005). Some new spaces of double sequencs. J. Math. Anal. Appl. 309. 70-90
    • Baarir, M,Sonalcan, O. (1999). On some double sequence spaces. J. Indian Acad. Math. 21. 193-200
    • Baar, F,Sever, Y. (2009). The space of double sequences. Math. J. Okayama Univ. 51. 149-157
    • Bromwich, T. J. (1965). An introduction to the theory of infinite series. Macmillan and Co. Ltd. New York.
    • Et, M,olak, R. (1995). On generalized difference sequence spaces. Soochow J. Math. 21. 377-386
    • Hardy, G. H. (1917). On the convergence of certain multiple series. Proc. Camb. Phil., Soc. 19. 86-95
    • Hardy, G. H. (1949). Divergent series. Oxford at the Clarendon Press.
    • G¨ahler, S. (1965). Linear 2-normietre Rume. Math. Nachr. 28. 1-43
    • Gunawan, H. (2001). On n-inner product, n-norms and the Cauchy-Schwartz inequality. Sci. Math. Jap. 5. 47-54
    • Gunawan, H. (2001). The space of p-summable sequence and its natural n-norm. Bull. Aust. Math. Soc. 64. 137-147
    • Gunawan, H,Mashadi, M. (2001). On n-normed spaces. Int. J. Math. Math. Sci. 27. 631-639
    • Kamthan, P. K,Gupta, M. (1981). Sequence spaces and series: Lecture Notes in Pure and Applied Mathematics. 65 Marcel Dekker, Inc. New York.
    • Kızmaz, H. (1981). On certain sequence spaces. Canad. Math-Bull. 24. 169-176
    • Lindenstrauss, J,Tzafriri, L. (1971). On Orlicz seequence spaces. Israel J. Math. 10. 379-390
    • Maligranda, L. (1989). Orlicz spaces and interpolation. Seminars in Mathematics 5.
    • Misiak, A. (1989). n-inner product spaces. Math. Nachr. 140. 299-319
    • Moricz, F. (1991). Extension of the spaces c and c0 from single to double sequences. Acta Math. Hungarica. 57. 129-136
    • Moricz, F,Rhoades, B. E. (1988). Almost convergence of double sequences and strong reqularity of summability matrices. Math. Proc. Camb. Phil....
    • Mursaleen, M. (2004). Almost strongly regular matrices and a core theorem for double sequences. J. Math. Anal. Appl. 293. 523-531
    • Mursaleen, M,Khan, M. A,Qamaruddin. (1999). Difference sequence spaces defined by Orlicz functions. Demonstratio Math. 145-150
    • Mursaleen, M,Edely, O. H. H. (2003). Statistical convergence of double sequences. J. Math. Anal. Appl. 288. 223-231
    • Mursaleen, M,Edely, O. H. H. (2004). Almost convergence and a core theorem for double sequences. J. Math. Anal. Appl. 293. 532-540
    • Musielak, J. (1983). Orlicz spaces and modular spaces. Lecture Notes in Mathematics. 1034.
    • Nakano, H. (1951). Modular sequence spaces. Proc. Japan Acad. 27. 508-512
    • Prashar, S. D,Choudhary, B. (1994). Sequence spaces defined by Orlicz functions. Indiana J. Pure Appl. Math. 25. 419-428
    • Pringsheim, A. (1900). Zur Theori der zweifach unendlichen Zahlenfolgen. Math. Ann. 53. 289-321
    • Raj, K,Sharma, A. K,Sharma, S. K. (2011). A Sequence space defined by a Musielak-Orlicz function. Int. J. Pure Appl. Math. 67. 475-484
    • Raj, K,Sharma, S. K,Sharma, A. K. (2010). Difference sequence spaces in n-normed spaces defined by a Musielak-Orlicz function. Armen. j. Math....
    • Raj, K,Sharma, S. K. (2011). Some sequence spaces in 2-normed spaces defined by a Musielak-Orlicz function. Acta Univ. Sapientiae Math. 3....
    • Robinson, G. M. (1926). Divergent double sequences and series. Trans. Amer. Math. Soc. 28. 50-73
    • Silverman, L. L. (1913). On the definition of the sum of a divergent series.
    • Simons, S. (1951). The sequence spaces and. Proc. Japan Acad. 27. 508-512
    • Tripathy, B. C. (2004). Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex...
    • Tripathy, B. C. (2003). Statistically convergent double sequences. Tamkang J. Math. 34. 231-237
    • Wilansky, A. (1984). Summability through Functional Analysis. North- Holland Math. Stud. 85.
    • Zeltser, M. (2001). Investigation of double sequence spaces by Soft and Hard Analytical Methods. Dissertationes Mathematicae Universitatis...
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno