Ir al contenido

Documat


Existence of deviating fractional differential equation

  • Rabha W Ibrahim [1]
    1. [1] University Malaya Institute of Mathematical Sciences
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 14, Nº. 3, 2012, págs. 129-142
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462012000300009
  • Enlaces
  • Resumen
    • español

      En este artículo establecemos condiciones suficientes para la existencia de soluciones de una clase de ecuaciones diferenciales fraccionales (del tipo Cauchy) y su solubilidad en un subconjunto de un espacio de Banach. La principal herramienta utilizada en nuestro estudio es la técnica del operador no expansivo. El caso no entero se escoge en el sentido de operadores fraccionales Riemann-Liouville. Además, se ilustran aplicaciones.

    • English

      In this paper we shall establish sufficient conditions for the existence of solutions of a class of fractional differential equation (Cauchy type ) and its solvability in a subset of the Banach space. The main tool used in our study is the non-expansive operator technique. The non integer case is taken in sense of Riemann Liouville fractional operators. Applications are illustrated.

  • Referencias bibliográficas
    • Ibrahim, R.W,Momani, S. (2007). On the existence and uniqueness of solutions of a class of fractional differential equations. J. Math. Anal....
    • Momani, S. M,Ibrahim, R.W. (2008). On a fractional integral equation of periodic functions involving Weyl-Riesz operator in Banach algebras....
    • El-Nabulsi, R. A. (2009). The fractional calculus of variations from extended Erdelyi-Kober operatorInt. J. Mod. Phys. 23. 3349-3361
    • Wei, Z,Dong, W,Che, J. (2010). Periodic boundary value problems for fractional differential equations involving Riemann-Liouville fractional...
    • Ahmad, B,Ntouyas, S. K,Alsaedi, A. New existence results for nonlinear fractional differential equations with three-point integral boundary...
    • Sabatier, J,Agrawal, O. P,Tenreiro Machado, J. A. (2007). Advance in Fractional Calculus: Theoretical Developments and Applications in Physics...
    • Podlubny, I. (1999). Fractional Differential Equations. Acad. Press. London.
    • Kilbas, A. A,Srivastava, H. M,Trujillo, J.J. (2006). Theory and applications of fractional differential equations. Elsevier. North-Holland.
    • Ibrahim, R. W,Darus, M. (2008). Subordination and superordination for analytic functions involving fractional integral operator. Complex Variables...
    • Ibrahim, R. W,Darus, M. (2008). Subordination and superordination for univalent solutions for fractional differential equations. J. Math....
    • Ibrahim, R. W. (2011). Existence and uniqueness of holomorphic solutions for fractional Cauchy problem. J. Math. Anal. Appl. 380. 232-240
    • Berinde, V. (2007). Iterative Approximation of Fixed Points. 2. Springer Verlag. Berlin Heidelberg New York.
    • Edelstein, M. (1966). A remark on a theorem of M. A. Krasnoselskij. Amer. Math. Monthly. 73. 509-510
    • Egri, E,Rus, I. (2007). First order iterative functional-dierential equation with parameter. Stud. Univ. Babes-Bolyai Math. 52. 67-80
    • Chidume, C. (2009). Geometric Properties of Banach spaces and nonlinear Iterations. Springer Verlag. Berlin, Heidelberg, New York.
    • Yang, D,Zhang, W. (2004). Solution of equivariance for iterative differential equations. Appl. Math. Lett. 17. 759-765
    • Ronto, A,Ronto, M. (2009). Succsesive approximation method for some linear boundary value problems for differential equations with a special...
    • Berinde, V. (2010). Existence and approximation of solutions of some first order iterative differential equations. Miskolc Math. Notes. 11....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno