Ir al contenido

Documat


A unique common coupled fixed point theorem for four maps under Ψ-Φ contractive condition in partial metric spaces

  • K.P.R Rao [2] ; G.N.V Kishore [3] ; Nguyen Van Luong [1]
    1. [1] Hồng Đức University

      Hồng Đức University

      Vietnam

    2. [2] Acharya Nagarjuna Univertsity Guntur District Department of Mathematics
    3. [3] Swarnandhra Institute of Engineering and Technology Department of Mathematics
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 14, Nº. 3, 2012, págs. 115-127
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462012000300008
  • Enlaces
  • Resumen
    • español

      En este artículo obtenemos un teorema del punto fijo clásico acoplado único para cuatro aplicaciones en espacios métricos parciales.

    • English

      In this paper, we obtain a unique coupled common fixed point theorem for four maps in partial metric spaces.

  • Referencias bibliográficas
    • Altun, Ishak,Sola, Ferhan,Simsek, Hakan. (2010). Generalized contractions on partial metric spaces. Topology and its Applications. 157. 2778-2785
    • Abbas, M,Alikhan, M,Radenovic, S. (2010). Common coupled fixed point theorems in cone metric spaces for w - compatible mappings. Applied Mathematics...
    • Abdeljawad, T,Karapinar, E,Tas, K. (2011). Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 24....
    • Aydi, H. (2011). Some coupled fixed point results on partial metric spaces. International Journal of Mathematics and Mathematical Sciences....
    • Karapinar, E,Erhan, I.M. (2011). Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 24. 1894-1899
    • Schellekens, M. (1995). The Smyth completion: a common foundation for denotational semantics and complexity analysis. Electronic Notes in...
    • Schellekens, M. (2003). A characterization of partial metrizebility: domains are quantifiable. Theoretical Computer Sciences. 305. 409-432
    • Waszkiewicz, P. (2003). Quantitative continuous domains. Applied Categorical Structures. 11. 41-67
    • Waszkiewicz, P. (2006). Partial metrizebility of continuous posets. Mathematical Structures in Computer Sciences. 16. 359-372
    • Heckmann, R. (1999). Approximation of metric spaces by partial metric spaces. Appl. Categ. Structures. 12. 71-83
    • Oltra, Sandra,Valero, Oscar. (2004). Banach fixed point theorem for partial metric spaces. Rend.Istit.Mat.Univ.Trieste. 17-26
    • Romaguera, Salvador. (2010). A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory and Applications....
    • Matthews, S.G. (1994). Partial metric topology: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci....
    • O’Neill, S.J. (1996). Partial metrics, valuations and domain theory. 806. Proc. 11th Summer Conference on General Topology and Applications.
    • Romaguera, S,Schellekens, M. (2005). Partial metric monoids and semi valuation spaces. Topology and Applications. 153. 948-962
    • Romaguera, S,Valero, O. (2009). A quantitative computational modal for complete partial metric space via formal balls. Mathematical Structures...
    • Bhaskar, T.G,Lakshmikantham, V. (2006). Fixed point theorems in partially ordered cone metric spaces and applications. Nonlinear Analysis...
    • Van Luong, Nguyen,Xuan Thuan, Nguyen. (2011). Coupled fixed points in partially order metric spaces and application. Nonlinear Analysis. 74....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno