Ir al contenido

Documat


Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators

  • George A Anastassiou [1]
    1. [1] University of Memphis

      University of Memphis

      Estados Unidos

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 14, Nº. 3, 2012, págs. 71-83
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462012000300005
  • Enlaces
  • Resumen
    • español

      Estudiamos la cuasi-interpolación de los operadores de redes neuronales de tipo tangencial hiperbólico y sigmoidal de una capa oculta. Basados en la Teoría del Cálculo Fraccional, obtenemos expansiones asintóticas del tipo Voronovskaya para el error en la aproximación de estos operadores hacia el operador unitario.

    • English

      Here we study further the quasi-interpolation of sigmoidal and hyperbolic tangent types neural network operators of one hidden layer. Based on fractional calculus theory we derive fractional Voronovskaya type asymptotic expansions for the error of approximation of these operators to the unit operator.

  • Referencias bibliográficas
    • Anastassiou, G.A. (1997). Rate of convergence of some neural network operators to the unit-univariate case. J. Math. Anal. Appli. 212. 237-262
    • Anastassiou, G.A. (2001). Quantitative Approximations. Chapman& Hall/CRC. Boca Raton.
    • Anastassiou, G.A. (2009). On Right Fractional Calculus. Chaos, solitons and fractals. 42. 365-376
    • Anastassiou, G.A. (2009). Fractional Differentiation Inequalities. Springer. New York.
    • Anastassiou, G. (2009). Fractional Korovkin theory. Chaos, Solitons & Fractals. 42. 2080-2094
    • Anastassiou, G.A. (2011). Inteligent Systems: Approximation by Artificial Neural Networks. Springer. Heidelberg.
    • Anastassiou, G.A. (2011). Fractional representation formulae and right fractional inequalities. Math- ematical and Computer Modelling. 54....
    • Anastassiou, G.A. (2011). Univariate hyperbolic tangent neural network approximation. Mathematics and Computer Modelling. 53. 1111-1132
    • Anastassiou, G.A. (2011). Multivariate hyperbolic tangent neural network approximation. Computers and Mathematics. 61. 809-821
    • Anastassiou, G.A. (2011). Multivariate sigmoidal neural network approximation. Neural Networks. 24. 378-386
    • Anastassiou, G.A. (2011). Univariate sigmoidal neural network approximation. J. of Computational Analysis and Applications.
    • Chen, Z,Cao, F. (2009). The approximation operators with sigmoidal functions. Computers and Mathematics with Applications. 58. 758-765
    • Diethelm, K. (2010). The Analysis of Fractional Differential Equations: Lecture Notes in Mathematics 2004. Springer-Verlag. Berlin, Heidelberg....
    • El-Sayed, A.M.A,Gaber, M. (2006). On the finite Caputo and finite Riesz derivatives. Electronic Journal of Theoretical Physics. 3. 81-95
    • Frederico, G.S,Torres, D.F.M. (2008). Fractional Optimal Control in the sense of Caputo and the fractional Noether’s theorem. International...
    • Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. 2. Prentice Hall. New York.
    • McCulloch, W,Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics. 7. 115-133
    • Mitchell, T.M. (1997). Machine Learning. WCB-McGraw-Hill. New York.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno