Ir al contenido

Documat


Fundamentals of scattering theory and resonances in quantum mechanics

  • Peter D Hislop [1]
    1. [1] University of Kentucky

      University of Kentucky

      Estados Unidos

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 14, Nº. 3, 2012, págs. 1-39
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462012000300001
  • Enlaces
  • Resumen
    • español

      Presentamos los conceptos básicos de la teoría de dispersión cuanto-mecánica de dos cuerpos y la teoría de resonancias cuánticas. El operador de ondas y la matriz S se construyen para perturbaciones del potencial suaves y de soporte compacto del Laplaciano. La continuación meromórfica de la resolvente truncada se prueba para la misma familia de operadores de Schrödinger. Las resonancias cuánticas se definen como los polos de la continuación meromórifca de la resolvente truncada. Se muestra que ellas son las mismas que los polos de la matriz S continuada meromórficamente. Los problemas básicos de la existencia de resonancias y las estimaciones de la función de conteo de la resonancia se describen y resultados recientes se presentan.

    • English

      ABSTRACT We present the basics of two-body quantum-mechanical scattering theory and the theory of quantum resonances. The wave operators and S-matrix are constructed for smooth, compactly-supported potential perturbations of the Laplacian. The meromorphic continuation of the cut-off resolvent is proved for the same family of Schrödinger operators. Quantum resonances are defined as the poles of the meromorphic continuation of the cut-off resolvent. These are shown to be the same as the poles of the meromorphically continued S-matrix. The basic problems of the existence of resonances and estimates on the resonance counting function are described and recent results are presented.

  • Referencias bibliográficas
    • Amrein, W. O,Jauch, J. M,Sinha, K. B. (1977). Scattering theory in quantum mechanics. Reading, MA: W. A. Benjamin, Inc.
    • Christiansen, T. (1999). Some lower bounds on the number of resonances in Euclidean scattering. Math. Res. Lett. 6. 203-211
    • Christiansen, T. (2006). Schrödinger operators with complex-valued potentials and no resonances. Duke Math. Journal. 133. 313-323
    • Christiansen, T. (2005). Several complex variables and the distribution of resonances for potential scattering. Commun. Math. Phys. 259. 711-728
    • Christiansen, T,Hislop, P. D. (2005). The resonance counting function for Schrödinger operators with generic potentials. Math. Research Letters....
    • Christiansen, T,Hislop, P. D. (2010). Maximal order of growth for the resonance counting function for generic potentials in even dimensions....
    • Christiansen, T. J,Hislop, P. D. Some remarks on scattering resonances in even dimensions.
    • Christiansen, T. J,Hislop, P. D. Resonances for Schrödinger operators with compactly supported potentials. Journées Équations aux dérivées...
    • Cycon, H. L,Forese, R. G,Kirsch, W,Simon, B. (1987). Schrödinger operators with applications to quantum mechanics and global geometry. Springer-Verlag....
    • Dimassi, M,Sjöstrand, J. (1999). Spectral Asymptotics in the Semi-Classical Limit. Cambridge Univ. Press. Cambridge.
    • Froese, R. (1997). Asymptotic distribution of resonances in one dimension. J. Differential Equations. 137. 251272
    • Froese, R. (1998). Upper bounds for the resonance counting function of Schrdinger operators in odd dimensions. Canad. J. Math. 50. 538546
    • Herbst, I. (1979). Dilation analyticity in a constant electric field I: The two body problem. Commun. Math. Phys. 67. 279-298
    • Hislop, P. D,Sigal, I. M. (1996). Introduction to spectral theory with applications to Schrödinger operators. Springer. New York.
    • Intissar, A. (1986). A polynomial bound on the number of the scattering poles for a potential in even dimensional spaces. Comm. Partial Diff....
    • Lelong, P,Gruman, L. (1986). Entire functions of several complex variables. Springer Verlag. Berlin.
    • Lax, P. D,Phillips, R. S. (1969). Decaying modes for the wave equation in the exterior of an obstacle. Comm. Pure Appl. Math. 22. 737-787
    • Martinez, A. (2002). An introduction to semiclassical and microlocal analysis, Universitext. Springer-Verlag. New York.
    • Melrose, R. (1995). Geometric scattering theory. Cambridge University Press. Cambridge.
    • Melrose, R. (1982). Scattering theory and the trace of the wave group. J. Funct. Anal. 45. 25-40
    • Melrose, R. (1983). Polynomial bounds on the number of scattering poles. J. Funct. Anal. 53. 287-303
    • Mourre, E. (1981). Absence of singular continuous spectra for certain selfadjoint operators. Commun. Math. Phys. 78. 391-408
    • Olver, F. W. J. (1974). Asymptotics and Special Functions. Academic Press. San Deigo.
    • Olver, F. W. J. (1954). The asymptotic solution of linear differential equations of the second order for large values of a parameter. Phil....
    • Olver, F. W. J. (1954). The asymptotic expansion of Bessel functions of large order. Phil. Trans. Royal Soc. London ser. A. 247. 328-368
    • Perry, P. A. (1980). Mellin transforms and scattering theory. I. Short range potentials. Duke Math. J. 47. 187-193
    • Perry, P. A,Simon, B. (1983). Scattering theory by the Enss method. Mathematical Reports, 1, Part 1. Harwood Academic Publishers, Chur.
    • Petkov, V,Zworski, M. (2001). Semi-classical estimates on the scattering determinant. Ann. H. Poincaré. 2. 675-711
    • Reed, M,Simon, B. (1980). Methods of Modern Mathematical Physics, Volume I: Functional Analysis. Academic Press. New York.
    • Reed, M,Simon, B. (1979). Methods of Modern Mathematical Physics, Volume II: Fourier Analysis, Self-Adjointness. Academic Press. New York.
    • Reed, M,Simon, B. (1979). Methods of Modern Mathematical Physics, Volume III: Scattering Theory. Academic Press. New York.
    • Reed, M,Simon, B. (1984). Methods of Modern Mathematical Physics, Volume IV: Analysis of Operators. Academic Press. New York.
    • Robert, D. (1987). Autour de l’approximation semi-classique. Birkhauser. Boston.
    • Sá Barreto, A. (2001). Remarks on the distribution of resonances in odd dimensional Euclidean scattering. Asymptot. Anal. 27. 161-170
    • Sá Barreto, A. (1999). Lower bounds for the number of resonances in even dimensional potential scattering. J. Funct. Anal. 169. 314-323
    • Sá Barreto, A,Tang, S.-H. (2000). Existence of resonances in even dimensional potential scattering. Commun. Part. Diff. Eqns. 25. 1143-1151
    • Shenk, N,Thoe, D. (1972). Resonant states and poles of the scattering matrix for perturbations of −Δ. J. Math. Anal. Appl. 37. 467-491
    • Sigal, I. M,Soffer, A. (1987). The N-particle scattering problem: asymptotic completeness for shortrange systems. Ann. of Math(2). 126. 35-108
    • Simon, B. (2005). Trace ideals and their applications. American Math. Soc. Providence^eRI RI.
    • Vasy, A. (1997). Scattering poles for negative potentials. Comm. Partial Differential Equations. 22. 185-194
    • Vodev, G. (1992). Sharp polynomial bounds on the number of scattering poles for perturbations of the Laplacian. Commun. Math. Phys. 146. 39-49
    • Vodev, G. (1994). Sharp bounds on the number of scattering poles in even-dimensional spaces. Duke Math. J. 74. 1-17
    • Vodev, G. (1994). Sharp bounds on the number of scattering poles in the two-dimensional case. Math. Nachr. 170. 287-297
    • Vodev, G. Resonances in Euclidean scattering. Cubo Matemática Educacional. 3. 319-360
    • Yafaev, D. (2000). Mathematical scattering theory. AMS. Providence^eRI RI.
    • Zworski, M. (1987). Distribution of poles for scattering on the real line. J. Funct. Anal. 73. 277-296
    • Zworski, M. (1989). Sharp polynomial bounds on the number of scattering poles of radial potentials. J. Funct. Anal. 82. 370-403
    • Zworski, M. (1997). Poisson formulae for resonances. Séminaire sur les Equations aux Dérivées Partielles.
    • Zworski, M. (1994). Spectral and scattering theory (Sanda, 1992). Dekker. New York.
    • Zworski, M. (1999). Resonances in physics and geometry. Notices Amer. Math. Soc. 46. 319-328
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno