Ir al contenido

Documat


Number of Limit Cycles for Planar Systems with Invariant Algebraic Curves

  • Armengol Gasull [1] ; Hector Giacomini [2]
    1. [1] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

    2. [2] Université de Tours
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • For planar polynomials systems the existence of an invariant algebraic curve limits the number of limit cycles not contained in this curve. We present a general approach to prove non-existence of periodic orbits not contained in this given algebraic curve.

      When the method is applied to parametric families of polynomial systems that have limit cycles for some values of the parameters, our result leads to effective algebraic conditions on the parameters that force non-existence of the periodic orbits. As applications we consider several families of quadratic systems: the ones having some quadratic invariant algebraic curve, the known ones having an algebraic limit cycle, a family having a cubic invariant algebraic curve and other ones. For any quadratic system with two invariant algebraic curves we prove a finiteness result for its number of limit cycles that only depends on the degrees of these curves. We also consider some families of cubic systems having either a quadratic or a cubic invariant algebraic curve and a family of Liénard systems. We also give a new and simple proof of the known fact that quadratic systems with an invariant parabola have at most one limit cycle. In fact, what we show is that this result is a consequence of the similar result for quadratic systems with an invariant straight line

  • Referencias bibliográficas
    • 1. Alberich-Carramiñana, M., Ferragut, A., Llibre, J.: Quadratic planar differential systems with algebraic limit cycles via quadratic plane...
    • 2. Bamón, R.: Quadratic vector fields in the plane have a finite number of limit cycles. Inst. Hautes Études Sci. Publ. Math. 64, 111–142...
    • 3. Bautin, N.N.: On periodic solutions of a system of differential equations. Akad. Nauk. SSSR. Prikl. Mat. Meh. 18, 128 (1954). (in Russian)
    • 4. Carnicer, M.M.: The Poincaré problem in the nondicritical case. Ann. Math. (2) 140, 289–294 (1994)
    • 5. Chavarriga, J., García, I.A.: Existence of limit cycles for real quadratic differential systems with an invariant cubic. Pacific J. Math....
    • 6. Chavarriga, J., García, I.A.: Some criteria for the existence of limit cycles for quadratic vector fields. J. Math. Anal. Appl. 282, 296–304...
    • 7. Chavarriga, J., García, I.A., Sorolla, J.: Non-nested configuration of algebraic limit cycles in quadratic systems. J. Differ. Equ. 225,...
    • 8. Chavarriga, J., Giacomini, H., Llibre, J.: Uniqueness of algebraic limit cycles for quadratic systems. J. Math. Anal. Appl. 261, 85–99...
    • 9. Chavarriga, J., Grau, M.: A family of non-Darboux-integrable quadratic polynomial differential systems with algebraic solutions of arbitrarily...
    • 10. Chavarriga, J., Llibre, J., Sorolla, J.: Algebraic limit cycles of degree 4 for quadratic systems. J. Differ. Equ. 200, 206–244 (2004)
    • 11. Cherkas, L.A.: Methods for estimating the number of limit cycles of autonomous systems. Differ. Uravneniya 13, (1977), 779–802 (in Russian)...
    • 12. Cherkas, L.A., Zhilevich, L.I.: Some tests for the absence or uniqueness of limit cycles. Differ. Uravneniya 6, 1170–1178 (1970) (in Russian)...
    • 13. Cherkas, L.A., Zhilevich, L.I.: The limit cycles of certain differential equations. Differ. Uravneniya 8 (1972), 1207–1213 (in Russian)...
    • 14. Christopher, C.J.: Quadratic systems having a parabola as an integral curve. Proc. Roy. Soc. Edinb. 112A, 113–134 (1989)
    • 15. Christopher, C.J., Llibre, J.: A family of quadratic polynomial differential systems with invariant algebraic curves of arbitrarily high...
    • 16. Christopher, C.J., Llibre, J., Swirszcz, G.: Invariant algebraic curves of large degree for quadratic ´ systems. J. Math. Anal. Appl....
    • 17. Coll, B., Llibre, J.: Limit cycles for a quadratic system with an invariant straight line and some evolution of phase portraits. Colloquia...
    • 18. Coppel, W.A.: A survey of quadratic systems. J. Differ. Equ. 2, 293–304 (1966)
    • 19. Coppel, W.A.: Some quadratic systems with at most one limit cycle. Dyn. Rep. Ser. Dyn. Syst. Appl. 2, 61–88 (1989)
    • 20. Filipstov, V.F.: Algebraic limit cycles. Differ. Uravneniya 9, 1281–1288 (1973) (in Russian) [translated in Differ. Equ. 9, 983–988 (1973)]
    • 21. García, I.A., Giné, J.: Non-algebraic invariant curves for polynomial planar vector fields. Discrete Contin. Dyn. Syst. 10, 755–768 (2004)
    • 22. García, I.A., Llibre, J.: Classical planar algebraic curves realizable by quadratic polynomial differential systems. Internat J. Bifur....
    • 23. Gasull, A.: On polynomial systems with invariant algebraic curves. In: International Conference on Differential Equations, vol. 1, 2 (Barcelona,...
    • 24. Gasull, A., Giacomini, H.: Some applications of the extended Bendixson–Dulac theorem. In: Progress and Challenges in Dynamical Systems,...
    • 25. Gasull, A., Giacomini, H.: Effectiveness of the Bendixson–Dulac theorem. J. Differ. Equ. 305, 347–367 (2021)
    • 26. Gasull, A., Llibre, J., Sotomayor, J.: Limit cycles of vector fields of the form X(v) = Av + f (v)Bv. J. Differ. Equ. 67, 90–110...
    • 27. Giacomini, H., Grau, M.: On the stability of limit cycles for planar differential systems. J. Differ. Equ. 213, 368–388 (2005)
    • 28. Holmes, C.A.: Some quadratic systems with a separatrix cycle surrounding a limit cycle. J. Lond. Math. Soc. II. Ser. 37, 545–551 (1988)
    • 29. Llibre, J.: Open problems on the algebraic limit cycles of planar polynomial vector fields. Bul. Acad. Stiin¸ ¸ te Repub. Mold. Mat. 56,...
    • 30. Llibre, J., Swirszcz, G.: Relationships between limit cycles and algebraic invariant curves for quadratic ´ systems. J. Differ. Equ. 229,...
    • 31. Llibre, J., Swirszcz, G.: Classification of quadratic systems admitting the existence of an algebraic ´ limit cycle. Bull. Sci. Math....
    • 32. Llibre, J., Valls, C.: Algebraic limit cycles on quadratic polynomial differential systems. Proc. Edinb. Math. Soc. II. Ser. 61, 499–512...
    • 33. Llibre, J., Valls, C.: Algebraic limit cycles for quadratic polynomial differential systems. Discrete Contin. Dyn. Syst. Ser. B 23, 2475–2485...
    • 34. Llibre, J., Zhao, Y.: Algebraic limit cycles in polynomial systems of differential equations. J. Phys. A 40, 14207–14222 (2007)
    • 35. Moulin Ollagnier, J.: About a conjecture on quadratic vector fields. J. Pure Appl. Algebra 165, 227–234 (2001)
    • 36. Qin, Y.-X.: On the algebraic limit cycles of second degree of the differential equation dy/dx = 0≤i+ j≤2 ai j xi y j / 0≤i+...
    • 37. Rees, E.L.: Graphical discussion of the roots of a quartic equation. Am. Math. Mon. 29, 51–55 (1922)
    • 38. Rychkov, G.S.: The limit cycles of the equation u(x + 1)du = (−x + ax2 + bxu + cu + du2)dx. Differ. Uravneniya...
    • 39. Shui, S.: A planar quadratic system with an invariant cubic curve has at most one limit cycle. Acta Math. Appl. Sinica 24, 590–595 (2001)....
    • 40. Yablonskii, A.I.: On the limit cycles of a certain differential equation. Differ. Uravneniya 2, 335–344 (1966) (in Russian) [translated...
    • 41. Ye, Y.Q., et al.: Theory of Limit Cycles, 2nd edition, vol. 66. American Mathematical Society, Providence (1986) [Translations of Mathematical...
    • 42. Zegeling, A., Kooij, R.E.: Uniqueness of limit cycles in polynomial systems with algebraic invariants. Bull. Aust. Math. Soc. 49, 7–20...
    • 43. Zegeling, A., Kooij, R.E.: Quadratic systems with a symmetrical solution. Electron. J. Qual. Theory Differ. Equ. 32, 18 (2018)
    • 44. Zhang, P.: On the distribution and number of limit cycles for quadratic systems with two foci. Qual. Theory Dyn. Syst. 3, 437–463 (2002)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno