Ir al contenido

Documat


Stationary Distribution and Periodic Solution of a Stochastic n-Species Gilpin–Ayala Competition System with General Saturation Effect and Nonlinear Perturbations

  • Bingtao Han [1] ; Daqing Jiang [2] ; Baoquan Zhou [1]
    1. [1] China University of Petroleum (East China)
    2. [2] China University of Petroleum (East China) & King Abdulaziz University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, a generalized n-species Gilpin–Ayala competition system with saturation effect and nonlinear perturbations is proposed and examined. We first develop a new mathematical technique called “stochastic -threshold method”, to tackle the nonlinear perturbations and study the competitive coexistence, which includes the existence of ergodic stationary distribution as well as stochastic positive periodic solution. It should be mentioned that the method can be successfully applied to the species coexistence of other biological models. Then, we establish sufficient conditions for exponential extinction of competing species. Finally, several numerical examples are provided to support our theoretical results and analyze the impact of key parameters.

  • Referencias bibliográficas
    • 1. Levin, S.: Community equilibria and stability, and an extension of the competitive exclusion principle. Am. Nat. 104, 413–423 (1970)
    • 2. Zhang, L., Teng, Z.: N-species non-autonomous Lotka–Volterra competitive systems with delays and impulsive perturbations. Nonlinear Anal.:...
    • 3. Bartlett, M.S.: On theoretical models for competitive and predatory biological systems. Biometrika 44, 27–42 (1957)
    • 4. Murray, J.D.: Mathematical Biology. Springer, Berlin (2002)
    • 5. Golpalsamy, K.: Globally asymptotic stability in a periodic Lotka–Volterra system. J. Austral. Math. Soc. Ser. B. 24, 160–170 (1982)
    • 6. Tineo, A.: An iterative scheme for the N-competing species problem. J. Differ. Equ. 116, 1–15 (1995)
    • 7. Zeeman, M.: Extinction in competitive Lotka–Volterra systems. Proc. Am. Math. Soc. 123, 87–96 (1995)
    • 8. Lian, B., Hu, S.: Asymptotic behaviour of the stochastic Gilpin–Ayala competition models. J. Math. Anal. Appl. 339, 419–428 (2008)
    • 9. Gilpin, M.E., Ayala, F.G.: Global models of growth and competition. Proc. Acad. Sci. Am. 70, 3590– 3593 (1973)
    • 10. Xu, C., Li, Q., Zhang, T., Yuan, S.: Stability and Hopf bifurcation for a delayed diffusive competition model with saturation effect....
    • 11. Li, Q., Liu, Z., Yuan, S.: Cross-diffusion induced Turing instability for a competition model with saturation effect. Appl. Math. Comput....
    • 12. Hu, J., Liu, Z., Wang, L., Tan, R.: Extinction and stationary distribution of a competition system with distributed delays and higher...
    • 13. Ning, W., Liu, Z., Wang, L., Tan, R.: Analysis of a stochastic competitive model with saturation effect and distributed delay. Methodol....
    • 14. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Springer, Cham (1992)
    • 15. Liu, Z., Hu, J.: Incorporating two coupling noises into a nonlinear competitive system with saturation effect. Int. J. Biomath. 13(2),...
    • 16. Liu, Z., Wu, J., Tan, R.: Permanence and extinction of an impulsive delay competitive Lotka–Volterra model with periodic coefficients....
    • 17. Tian, B., Yang, L., Chen, X., Zhang, Y.: A generalized stochastic competitive system with Ornstein– Uhlenbeck process. Int. J. Biomath....
    • 18. Holling, C.S.: The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol....
    • 19. Wang, L., Jiang, D.: A note on the stationary distribution of the stochastic chemostat model with general response functions. Appl. Math....
    • 20. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)
    • 21. Mao, X., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Process. Appl. 97,...
    • 22. Qi, H., Meng, X., Hayat, T., Hobiny, A.: Distribution of a stochastic predator–prey model with hunting cooperation. Appl. Math. Lett....
    • 23. Zuo, W., Jiang, D., Sun, X., Hayat, T., Alsaedi, A.: Long-time behaviors of a stochastic cooperative Lotka–Volterra system with distributed...
    • 24. Liu, Q., Jiang, D., Hayat, T., Alsaedi, A.: Stationary distribution and extinction of a stochastic predator– prey model with herd behavior....
    • 25. Jiang, D., Ji, C., Li, X., O’Regan, D.: Analysis of autonomous Lotka–Volterra competition systems with random perturbation. J. Math. Anal....
    • 26. Zhang, Q., Jiang, D., Liu, Z., O’Regan, D.: The long time behavior of a predator–prey model with disease in the prey by stochastic perturbation....
    • 27. Zhang, X., Jiang, D.: Periodic solutions of a stochastic food-limited mutualism model. Methodol. Comput. Appl. Prob. 22, 267–278 (2020)
    • 28. Zu, L., Jiang, D., O’Regan, D., Hayat, T., Ahmad, B.: Ergodic property of a Lotka–Volterra predatorprey model with white noise higher...
    • 29. Han, B., Jiang, D., Hayat, T., Alsaedi, A., Ahmad, B.: Stationary distribution and extinction of a stochastic staged progression AIDS...
    • 30. Lv, X., Meng, X., Wang, X.: Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation....
    • 31. Jiang, D., Wen, X., Zhou, B.: Stationary distribution and extinction of a stochastic two-stage model of social insects with egg cannibalism....
    • 32. Qi, H., Meng, X.: Threshold behavior of a stochastic predator–prey system with prey refuge and fear effect. Appl. Math. Lett. 113, 106846...
    • 33. Zhang, H., Cai, Y., Fu, S., Wang, W.: Impact of the fear effect in a prey–predator model incorporating a prey refuge. Appl. Math. Comput....
    • 34. Liu, Q., Jiang, D., Hayat, T., Ahmad, B.: Stationary distribution and extinction of a stochastic predatorprey model with additional food...
    • 35. Liu, Q., Jiang, D.: Influence of the fear factor on the dynamics of a stochastic predator–prey model. Appl. Math. Lett. 112, 106756 (2020)
    • 36. Liu, Q., Jiang, D.: Periodic solution and stationary distribution of stochastic predator-prey models with higher-order perturbation. J....
    • 37. Nguyen, D.H., Yin, G.: Coexistence and exclusion of stochastic competitive Lotka–Volterra models. J. Differ. Equ. 262, 1192–1225 (2017)
    • 38. Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)
    • 39. Zu, L., Jiang, D., O’Regan, D., Ge, B.: Periodic solution for a non-autonomous Lotka–Volterra predatorprey model with random perturbation....
    • 40. Ji, C., Yang, X., Li, Y.: Permanence, extinction and periodicity to a stochastic competitive model with infinite distributed delays. J....
    • 41. Huo, H., Li, W.: Periodic solution of a delayed predator–prey system without dominating instantaneous negative feedback. Appl. Math. Comput....
    • 42. Zuo, W., Jiang, D.: Stationary distribution and periodic solution for stochastic predator-prey systems with nonlinear predator harvesting....
    • 43. Hening, A., Nguyen, D.H.: Coexistence and extinction for stochastic Kolmogorov systems. Ann. Appl. Prob. 28(3), 1893–1942 (2018)
    • 44. Nguyen, D.H., Nguyen, N.N., Yin, G.: Stochastic functional Kolmogorov equations, I: persistence. Stoch. Process. Appl. 142, 319–364 (2021)
    • 45. Fu, J., Han, Q., Jiang, D., Yang, Y.: Dynamics of an autonomous Gilpin–Ayala competition model with random perturbation. Int. J. Biomath....
    • 46. Song, M., Zuo, W., Jiang, D., Hayat, T.: Stationary distribution and ergodicity of a stochastic cholera model with multiple pathways of...
    • 47. Maja, V., Niljana, J.: Dynamics of Gilpin–Ayala competition model with random perturbation. Fac. Sci. Math. 24(1), 101–113 (2010)
    • 48. Khasminskii, R.Z.: Stochastic Stability of Differential Equations. Springer, Berlin (2011)
    • 49. Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems. SIAM J. Control Optim. 46, 1155–1179 (2007)
    • 50. Nguyen, D.H., Yin, G., Zhu, C.: Long-term analysis of a stochastic SIRS model with general incidence rates. SIAM J. Appl. Math. 80, 814–838...
    • 51. Du, N.H., Dieu, N.T., Nhu, N.N.: Conditions for permanence and ergodicity of certain SIR epidemic models. Acta Appl. Math. 160, 81–99...
    • 52. Zhao, Y., Yuan, S., Ma, J.: Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted...
    • 53. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)
    • 54. Liu, L., Zhu, Q.: Analysis of stochastic Gilpin–Ayala competition system. Math. Prob. Eng. 2014, 637862 (2014)
    • 55. Zhu, P., Wang, X., Li, S., Guo, Y., Wang, Z.: Investigation of epidemic spreading process on multiplex networks by incorporating fatal...
    • 56. Jia, D., Wang, X., Song, Z., Li, X., Jusup, M., Wang, Z.: Evolutionary dynamics drives role specialization in a community of players....
    • 57. Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and necessary conditions of a stochastic permanence and extinction for stochastic logistic...
    • 58. Zhang, X., Jiang, D., Alsaedi, A., Hayat, T.: Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching....
    • 59. Han, B., Jiang, D., Zhou, B., Hayat, T., Alsaedi, A.: Stationary distribution and probability density function of a stochastic SIRSI epidemic...
    • 60. Zhou, B., Jiang, D., Han, B., Hayat, T.: Threshold dynamics and density function of a stochastic epidemic model with media coverage and...
    • 61. Sait ¯o, Y.: Prey kills predator: counter-attack success of a spider mite against its specific phytoseiid predator. Exp. Appl. Acarol....
    • 62. Arsie, A., Kottegoda, C., Shan, C.: A predator–prey system with generalized holling type IV functional response and allee effects in prey....
    • 63. Tang, B., Xiao, Y.: Bifurcation analysis of a predator–prey model with anti-predator behaviour. Chaos Solitons Fract. 70, 58–68 (2015)
    • 64. Chen, L.: Mathematical Ecological Models and Research Methods. Science Press, Beijing (2021). (in Chinese)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno