Ir al contenido

Documat


Spreading Speed of a Cholera Epidemic Model in a Periodic Environment

  • Guo Lin [1] ; Shuxia Pan [2] ; Xueying Wang [3]
    1. [1] Lanzhou University

      Lanzhou University

      China

    2. [2] Lanzhou University of Technology

      Lanzhou University of Technology

      China

    3. [3] Washington State University

      Washington State University

      Estados Unidos

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper is devoted to the spreading speed of a cholera epidemic model, which is built upon a time-periodic reaction-diffusion system that is not necessarily monotonic. When the initial distribution of infected hosts and bacteria appears on a compact domain, we derive a rough expansion speed of the infection and the bacteria over space.

      Our results indicate that the disease may spread at an almost constant average speed.

      Although our approach can not give an explicit threshold in general, our conclusions imply that there exists a constant spreading speed and the numerical simulation is applicable to estimate the spreading ability of the disease in further application.

      Furthermore, if the parameters are constants, we obtain an explicit formulation of spreading speed. When incidence functions take the special form, the spreading speed is the minimal wave speed of traveling wave solutions in earlier works. Additionally, the theoretical findings of this work highlight that the movement of infected hosts and bacteria, and direct and indirect transmission routes are important factors affecting the spatial spreading ability of cholera.

  • Referencias bibliográficas
    • 1. Aronsson, D.G., Kellogg, R.B.: On a differential equation arising from compartmental analysis. Math. Biosci. 38, 113–122 (1978)
    • 2. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential...
    • 3. Bertuzzo, E., Casagrandi, R., Gatto, M., Rodriguez-Iturbe, I., Rinaldo, A.: On spatially explicit models of cholera epidemics. J. R. Soc....
    • 4. Che, E.N., Kang, Y., Abdul-Aziz, Y.: Risk structured model of cholera infections in Cameroon. Math. Biosci. 320(108303), 16 (2020)
    • 5. Chen, X., Tsai, J.-C.: Spreading speed in a farmers and hunter-gatherers model arising from Neolithic transition in Europe. J. Math. Pures...
    • 6. Codeco, C.T.: Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1(1), 14 (2001)
    • 7. Dangbé, E., Irépran, D., Perasso, A., Békollé, D.: Mathematical modelling and numerical simulations of the influence of hygiene and seasons...
    • 8. Diekmann, O.: Thresholds and travelling waves for the geographical spread of infection. J. Math. Biol. 69, 109–130 (1978)
    • 9. Diekmann, O.: Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Diff. Eq. 33, 58–73 (1979)
    • 10. Ducrot, A.: Convergence to generalized transition waves for some Holling–Tanner prey-predator reaction-diffusion system. J. Math. Pures...
    • 11. Ducrot, A.: Spatial propagation for a two component reaction-diffusion system arising in population dynamics. J. Diff. Eq. 260, 8316–8357...
    • 12. Eisenberg, M.C., Kujbida, G., Tuite, A.R., Fisman, D.N., Tien, J.H.: Examining rainfall and cholera dynamics in Haiti using statistical...
    • 13. Fang, J., Zhao, X.-Q.: Traveling waves for monotone semiflows with weak compactness. SIAM J. Math. Anal. 46, 3678–3704 (2014)
    • 14. Girardin, L.: Non-cooperative Fisher-KPP systems: traveling waves and long-time behavior. Nonlinearity 31, 108–164 (2018)
    • 15. Hartley, D.M., Morris, J.G., Jr., Smith, D.L.: Hyperinfectivity: a critical element in the ability of V.cholerae to cause epidemics? PLoS...
    • 16. Havumaki, J., Meza, R., Phares, C.R., Date, K., Eisenberg, M.C.: Comparing alternative cholera vaccination strategies in Maela refugee...
    • 17. Hirsch, M.W.: Systems of differential equations that are competitive or cooperative II: convergence almost everywhere. SIAM J. Math. Anal....
    • 18. Huang, M., Wu, S.-L., Zhao, X.-Q.: Propagation dynamics for time-periodic and partially degenerate reaction-diffusion systems. SIAM J....
    • 19. Islam, S., Rheman, S., Sharker, A.Y., Hossain, S., Nair, G.B., Luby, S.P., Larson, C.P., Sack, D.A.: Climate change and its impact on...
    • 20. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700–721 (1927)
    • 21. Korobeinikov, A., Maini, P.K.: Non-linear incidence and stability of infectious disease models. Math. Med. Biol. 22, 113–128 (2005)
    • 22. Lewis, M.A., Petrovskii, S.V., Sergei, J.R.: The mathematics behind biological invasions, interdisciplinary applied mathematics, p. 44....
    • 23. Liang, X., Yi, Y., Zhao, X.-Q.: Spreading speeds and traveling waves for periodic evolution systems. J. Diff. Eq. 231, 57–77 (2006)
    • 24. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm. Pure Appl. Math....
    • 25. Lin, G., Pan, S., Yan, X.P.: Spreading speeds of epidemic models with nonlocal delays. Mathe. Biosci. Eng. 16, 7562–7588 (2019)
    • 26. Lui, R.: Biological growth and spread modeled by systems of recursions. I Mathematical theory. Math. Biosci. 93, 269–295 (1989)
    • 27. Lupica, A., Gumel, A.B., Palumbo, A.: The computation of reproduction numbers for the environmenthost-environment cholera transmission...
    • 28. Malchow, H., Petrovskii, S.V., Venturino, E.: Spatiaotemporal patterns in ecology and epidemiology: theory, models and simulation. Chapman...
    • 29. Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D.L., Morris, J.G.: Estimating the reproductive numbers for the 2008–2009 cholera...
    • 30. Murray, J.D.: Mathematical biology, II. Spatial models and biomedical applications, Third edition. Interdisciplinary applied mathematics,...
    • 31. Nadin, G.: Some dependence results between the spreading speed and the coefficients of the space-time periodic Fisher-KPP equation. Eur....
    • 32. Pan, S.: Invasion speed of a predator-prey system. Appl. Math. Lett. 74, 46–51 (2017)
    • 33. Pao, C.V.: Nonlinear parabolic and elliptic equations. Plenum Press, New York (1992)
    • 34. Posny, D., Wang, J.: Modelling cholera in periodic environments. J. Biol. Dyn. 8, 1–19 (2014)
    • 35. Rinaldo, A., Bertuzzo, E., Mari, L., Righetto, L., Blokesch, M., Gatto, M., Casagrandi, R., Murray, M., Vesenbeckh, S.M., RodriguezIturbe,...
    • 36. Shigesada, N., Kawasaki, K.: Biological invasions: theory and practice. Oxford University Press, Oxford (1997)
    • 37. Shu, H., Ma, Z., Wang, X.-S.: Threshold dynamics of a nonlocal and delayed cholera model in a spatially heterogeneous environment. J....
    • 38. Song, H., Zhang, Y.: Traveling waves for a diffusive SIR-B epidemic model with multiple transmission pathways. Electron. J. Qual. Theory...
    • 39. Thieme, H.R., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction diffusion models....
    • 40. Tien, J.H., Earn, D.J.D.: Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol. 72, 1506–1533...
    • 41. Van den Driessche, P., Yakubu, A.A.: Disease extinction versus persistence in discrete-time epidemic models. Bull. Math. Biol. 81, 4412–4446...
    • 42. Wandiga, S.O.: Climate change and induced vulnerability to malaria and cholera in the Lake Victoria region, AIACC Final Report, Project...
    • 43. Wang, F.-B., Wang, X.: A general multipatch cholera model in periodic environments. Discr. Contin. Dyn. Syst. B (2022). https://doi.org/10.3934/dcdsb.2021105
    • 44. Wang, J., Jing, W.: Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population. J. Dyn. Diff....
    • 45. Wang, W., Zhao, X.-Q.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Diff. Equ. 20, 699–717 (2008)
    • 46. Wang, X., Lin, G., Ruan, S.: Spatial propagation in a within-host viral infection model, Studies. Appl. Math. 149, 43–75 (2022)
    • 47. Wang, X., Lin, G., Ruan, S.: Spreading speeds and traveling wave solutions of diffusive vector-borne disease models without monotonicity....
    • 48. Wang, X., Gao, D., Wang, J.: Influence of human behavior on cholera dynamics. Math. Biosci. 267, 41–52 (2015)
    • 49. Wang, X., Posny, D., Wang, J.: A reaction-convection-diffusion model for cholera spatial dynamics. Discr. Contin. Dyn. Syst. B 21, 2785–2809...
    • 50. Wang, X., Wang, F.-B.: Impact of bacterial hyperinfectivity on cholera epidemics in a spatially heterogeneous environment. J. Math. Anal....
    • 51. Wang, X., Wang, J.: Analysis of cholera epidemics with bacterial growth and spatial movement. J. Biol. Dyn. 9, 233–261 (2015)
    • 52. Wang, X., Wu, R., Zhao, X.-Q.: A reaction-advection-diffusion model of cholera epidemics with seasonality and human behavior change, J....
    • 53. Wang, X., Zhao, X.-Q., Wang, J.: A cholera epidemic model in a spatiotemporally heterogeneous environment. J. Math. Anal. Appl. 468, 893–912...
    • 54. Wang, W., Zhao, X.-Q.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Diff. Equ. 20, 699–717 (2008)
    • 55. Weinberger, H.F., Lewis, M.A., Li, B.: Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45, 183–218 (2002)
    • 56. Xiao, D., Ryunosuke, M.: Spreading properties of a three-component reaction-diffusion model for the population of farmers and hunter-gatherers....
    • 57. Yang, Y., Zou, L., Zhou, J., Hsu, C.H.: Dynamics of a waterborne pathogen model with spatial heterogeneity and general incidence rate....
    • 58. Ye, Q., Li, Z., Wang, M., Wu, Y.: Introduction to reaction diffusion equations. Science Press, Beijing (2011)
    • 59. Zhang, L., Wang, Z.-C., Zhang, Y.: Dynamics of a reaction-diffusion waterborne pathogen model with direct and indirect transmission. Comput....
    • 60. Zhou, J., Yang, Y., Zhang, T.: Global dynamics of a reaction-diffusion waterborne pathogen model with general incidence rate. J. Math....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno