Ir al contenido

Documat


Heat Kernel Method for Quintic and Sextic Equations in Distributions and Hyperfunctions

  • Mina Miahi [1] ; Farshid Mirzaee [1] ; Hamid Khodaei [1]
    1. [1] Malayer University

      Malayer University

      Irán

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we reformulate the quintic and sextic equations in the spaces of generalized functions. Using the pullbacks and the heat kernels, we investigate the approximate quintic and sextic mappings in the spaces of Schwartz tempered distributions and Fourier hyperfunctions.

  • Referencias bibliográficas
    • 1. Baker, J.A.: Functional equations, tempered distributions and Fourier transforms. Trans. Am. Math. Soc. 315, 57–68 (1989)
    • 2. Bodaghi, A., Narasimman, P., Ravi, K., Shojaee, B.: Mixed type of additive and quintic function equations. Ann. Math. Sil. 29, 35–50 (2015)
    • 3. Brzd¸ek, J., Popa, D., Ra¸sa, I., Xu, B.: Ulam Stability of Operators. Academic Press, Elsevier, Oxford (2018)
    • 4. Choi, C.K., Chang, J.: Stability of the sine-cosine functional equation in hyperfunctions. J. Comput. Anal. Appl. 25, 96–110 (2018)
    • 5. Chung, J.: A distributional version of functional equations and their stabilities. Nonlinear Anal. 62, 1037–1051 (2005)
    • 6. Chung, J.: A heat kernel approach to the stability of exponential equations in Schwartz distributions and hyperfunctions. J. Math. Phys....
    • 7. Chung, J.: Stability of functional equations in the space distributions and hyperfunctions. J. Math. Anal. Appl. 286, 177–186 (2003)
    • 8. Chung, J.: Stability of functional equations on restricted domains in a group and their asymptotic behaviors. Comput. Math. Appl. 60, 2653–2665...
    • 9. Chung, J., Chung, S.Y., Kim, D.: A characterization for Fourier hyperfunctions. Publ. Res. Inst. Math. Sci. 30, 203–208 (1994)
    • 10. Chung, J., Chung, S.Y., Kim, D.: The stability of Cauchy equations in the space of Schwartz distributions. J. Math. Anal. Appl. 295, 107–114...
    • 11. Chung, J., Chung, S.Y., Kim, D.: Une caractérisation de l’espace de Schwartz. C. R. Acad. Sci. Paris Sér. I Math. 316, 23–25 (1993)
    • 12. Chung, S.Y., Kim, D., Lee, E.G.: Periodic hyperfunctions and Fourier series. Proc. Am. Math. Soc. 128, 2421–2430 (2000)
    • 13. Chung, J., Sahoo, P.K.: Heat kernel method for the Levi–Civitá equation in distributions and hyperfunctions. Bull. Aust. Math. Soc. 92,...
    • 14. Falihi, S., Shojaee, B., Bodaghi, A., Zivari-Kazempour, A.: Approximation on the mixed type additivequadratic-sextic functional equation....
    • 15. Fardi, M., Pishkar, I., Alidousti, J., Khan, Y.: Numerical investigation of the MHD suction-injection model of viscous fluid using a kernel-based...
    • 16. Fardi, M., Khan, Y.: Numerical simulation of squeezing Cu-Water nanofluid flow by a kernel-based method. Int. J. Model. Simul. Sci. Comput....
    • 17. Fardi, M., Ghasemi, M.: Numerical solution of singularly perturbed 2D parabolic initial-boundaryvalue problems based on reproducing kernel...
    • 18. Fardi, M., Al-Omari, S.K.Q., Araci, S.: A pseudo-spectral method based on reproducing kernel for solving the time-fractional diffusion-wave...
    • 19. Gelfand, I.M., Shilov, G.E.: Generalized Functions IV. Academic Press, New York (1968)
    • 20. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1983)
    • 21. Kang, D., Kim, H.B.: Fourier transforms and L2-stability of diffusion equations. J. Comput. Appl. Math. 409, 114181 (2022)
    • 22. Kang, D., Koh, H.: A fixed point approach to the stability of sextic Lie*-derivations. Filomat 31, 4933–4944 (2017)
    • 23. Kawai, T.: On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients....
    • 24. Lee, Y.S.: Stability of quadratic functional equations in tempered distributions. J. Inequal. Appl. 2012, 177 (2012)
    • 25. Lee, Y.S., Chung, S.Y.: Stability of an Euler–Lagrange–Rassias equation in the spaces of generalized functions. Appl. Math. Lett. 21,...
    • 26. Lee, Y.S., Chung, S.Y.: Stability for quadratic functional equation in the spaces of generalized functions. J. Math. Anal. Appl. 336,...
    • 27. Lee, Y.S., Chung, S.Y.: Stability of quartic functional equations in the spaces of generalized functions. Adv. Differ. Equ. 2009, 838347...
    • 28. Matsuzawa, T.: A calculus approach to hyperfunctions III. Nagoya Math. J. 118, 133–153 (1990)
    • 29. Miahi, M., Mirzaee, F., Khodaei, H.: On convex-valued G-m-monomials with applications in stability theory. RACSAM 115, 76 (2021)
    • 30. Miahi, M., Mirzaee, F., Khodaei, H.: Stability problem for Pexiderized Cauchy–Jensen type functional equations of fuzzy number-valued...
    • 31. Mohanapriya, A., Park, C., Ganesh, A., Govindan, V.: Mittag–Leffler–Hyers–Ulam stability of differential equation using Fourier transform....
    • 32. Mohiuddine, S.A., Rassias, J.M., Alotaibi, A.: Solution of the Ulam stability problem for Euler– Lagrange–Jensen k-quintic mappings. Math....
    • 33. Narasimman, P., Rassias, J.M., Ravi, K.: n-dimensional quintic and sextic functional equations and their stabilities in Felbin type spaces....
    • 34. Park, C., Cui, J.L., Eshaghi Gordji, M.: Orthogonality and quintic functional equations. Acta Math. Sin. 29, 1381–1390 (2013)
    • 35. Sato, M.: Theory of hyperfunctions. Sûgaku 10, 1–27 (1958)
    • 36. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966)
    • 37. Zada, B.: Uniform exponential stability in the sense of Hyers and Ulam for periodic time varying linear systems. Differ. Equ. Appl. 10,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno