Ir al contenido

Documat


Spacetime singularity, singular bounds and compactness for solutions of the Poisson's equation

  • Carlos Cesar Aranda [1]
    1. [1] Blue Angel Navire research laboratory
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 17, Nº. 2, 2015, págs. 97-122
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462015000200007
  • Enlaces
  • Resumen
    • español

      Un hoyo negro es una región espacio-temporal en cuyo interior hay una estructura llamada singularidad espacio-temporal cuya descripción científica es difícil de encontrar, y que depende de la áun inexistente teoría de la gravedad cuántica. Usando el clásico principio de comparación débil, aquí probamos nuevas cotas, resultados de compacidad y fenómenos de concentración en la teoría de potenciales Newtonianos de distribuciones de soporte compacto, que dan una teoría matemática adecuada de la singularidad espacio-temporal. Derivamos una rigurosa renormalización de la ley de gravitación Newtoniana usando análisis funcional no lineal y tenemos un contundente conjunto de datos de observaciones astronómicas que apoyan nuestra nueva ecuación. Este marco general introduce una nueva forma de problema mal-puesto con una interpretación física muy simple.

    • English

      A black hole is a spacetime region in whose interior lies a structure known as a spacetime singularity whose scientific description is profoundly elusive, and which depends upon the still missing theory of quantum gravity. Using the classical weak comparison principle we are able to obtain new bounds, compactness results and concentration phenomena in the theory of Newtonian potentials of distributions with compact support which gives a suitable mathematical theory of spacetime singularity. We derive a rigorous renormalization of the Newtonian gravity law using nonlinear functional analysis and we have a solid set of astronomical observations supporting our new equation. This general setting introduces a new kind of ill posed problem with a very simple physical interpretation.

  • Referencias bibliográficas
    • Aranda, C. C,Godoy, T. (2004). Existence and multiplicity of positive solutions for a singular problem associated to the p-laplacian operator....
    • Aranda, C. C. (2012). Bounds and compactness for solutions of second-order elliptic equations. Electronic Journal of Differential Equations....
    • Aranda, C. C. On the Poisson's equation −Δu = ∞. CUBO A Mathematical Journal. 15. 151-158
    • Birman, M. S,Solomjak, M. Z. (1987). Spectral theory of self-adjoint operators in Hilbert space. D. Reidel Publishing Company. Dordrecht.
    • Blakely, R. J. (1996). Potential theory in gravity and magnetic applications. Cambridge University Press.
    • Brezis, H. (1999). Analyse fonctionnelle: Théorie et applications. Dunod. Paris.
    • Burko, L. M,Ori, A. (1997). Internal Structure of Black Holes and Space Time Singularities. Annals of the Israel Physical Society. 13.
    • Chandrasekhar, S. (1983). The mathematical theory of black holes. Oxford University Press.
    • Crandall, M. G,Rabinowitz, P. H,Tartar, L. (1977). On a Dirichlet problem with singular nonlinearity. Comm. Partial Differential Differential...
    • Dacorogna, B. (2004). Introduction to the calculus of varitions. Imperial College Press.
    • Dautray, R,Lions, J. L. (1990). Mathematical analysis and numerical methods for science and technology. Vol. 1 Physical Origins and classical...
    • Denegaar, N,Miller, J. M,Kennea, J,Gehrels, N,Reynolds, M. T,Wijnands, R. The X-ray flaring properties of Srg A* during six years of monitoring...
    • Fauser, B,Tolksdorf, J,Zeidler, E. (2006). Quantum Gravity Mathematical Models and Experimental Bounds. Birkhauser Verlag.
    • Folland, G. B. (1999). Real analysis. John Wiley & Sons Inc.
    • Frolov, V. P,Zelnikov, A. (2011). Introduction to Black Hole Physics. Oxford University Press.
    • Ghisellini, G,Ceca, R. D,Volonteri, M,Ghirlanda, G,Tavecchio, F,Foschini, L,Tagliaferri, G,Haardt, F,Pareschi, G,Grindlay, J. (2010). Chasing...
    • Giacomoni, J,Saoudi, K. (2009). Multiplicity of positive solutions for a singular and critical problem. Nonlinear Analysis. 71. 4060-4077
    • Gilbarg, D,Trudinger, N. S. Elliptic Partial Differential Equations of Second Order. 1998. Springer.
    • Falconer, K. (2003). Fractal Geometry Mathematical Foundations and Applications. Wiley.
    • Fitzpatrick, P. M. (1970). Principles of Celestial Equations. Academic Press.
    • Koshlyakov, N. S,Smirnov, M. M,Gliner, E. B. (1987). Differential Equations of Mathematical Physics. North-Holland Publishing Company 1964.ht....
    • Leoni, G. (2009). A first course in Sobolev spaces. AMS.
    • Lpez-Cruz, O,Aorve, C,Birkinshaw, M,Worrall, D.M,Ibarra-Medel, H.J,Barkhouse, W.A,Torres-Papaqui, J.P,Motta, V. (2014). The Central Galaxy...
    • Maz'ya, V. (2011). Sobolev Spaces With Applications to Elliptic Partial Differential Equations. 2. Springer.
    • McConnell, N. J. (2011). Two ten billion solar mass black holes at the centres of giant elliptical galaxies. Nature. 480. 21-58
    • McDonald, M. A Massive, Cooling Flow Induced Starburst in the Core of a Highly Luminous Galaxy Cluster. Nature.
    • Melia, F. (2007). The Galactic Supermassive Black Hole. Princeton University Press.
    • Nelson, C. H. (2000). Black Hole Mass, Velocity Dispersion, and the Radio Source in Active Galactic Nuclei. The Astrophysical Journal. 544....
    • Nečas, J. (2012). Direct Methods in The Theory of Elliptic Equations. Springer-Verlag.
    • O'Neill, B,Peters, A. K. (1995). The Geometry of Kerr Black Holes.
    • Penrose, R. (2004). The Road to Reality. Jonathan Cape. London.
    • M van Putten, M. H. P. (2005). Gravitational Radiation Luminus Black Holes and Gamma-Ray Burst Supernovae. Cambridge University Press.
    • Raine, D,Thomas, E. (2009). Black Holes. Imperial College Press.
    • Radulescu, V. D. (2007). Handbook of differential equations, stationary partial differential equations. Elsevier.
    • Riechers, D. A,Walter, F,Carilli, C. L,Lewis, G. F. (2009). Imaging The Molecular Gas in a z = 3.9 Quasar Host Galaxy at 0.''3...
    • Sauvigny, F. (2006). Partial differential equations 1. Springer.
    • Scharf, G. (1988). Finite Quantum Electrodynamics. Springer Verlag.
    • Scharf, G. (2001). Quantum Gauge Theories A True Ghost Story. John Wiley & Sons, Inc.
    • Shiga, D. Biggest black hole in the cosmos discovered. NewScientist.com news service.
    • Sokolnikoff, I. S. (1951). Tensor Analysis Theory and Applications. John Wiley & Sons. New York.
    • Stephani, H,Kramer, D,Maccallum, M,Hoenselaers, C,Herlt, E. (2003). Exact Solutions of Einstein's. Cambridge University Press.
    • Struwe, M. (2000). Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian systems. Springer.
    • Walsh, J. L,Barth, A. J,Ho, L. C,Sarzi, M. The M87 Black Hole Mass from Gas dynamical Models of Space Telescope Imaging Spectrograph Observations....
    • Wu, X,Wang, F,Fan, X,Yi, W,Zuo, W,Bian, F,Jiang, L,McGreer, I. D,Wang, R,Yang, J,Yang, Q,Thompson, D,Beletsky, Y. An ultraluminous quasar...
    • Ziemer, W. P. (1989). Weakly Differentiable Functions. Springer-Verlag.
    • Zubovas, K,Nayakshin, S,Markoff, S. Sgr A* flares: tidal disruption of asteroids and planets? to appear in Mon. Not. R. Astron. Soc.
    • Zuo, W,Wu, X. B,Fan, X,Green, R,Wang, R,Bian, F. (2014). Black Hole Mass Estimates and Rapid Growth of Supermassive Black Holes in Luminous...
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno