Ir al contenido

Documat


Measure of noncompactness on and applications

  • A Aghajani [1] ; D O’Regan [2] ; A Shole Haghighi [1]
    1. [1] Iran University of Science and Technology

      Iran University of Science and Technology

      Irán

    2. [2] National University of Ireland

      National University of Ireland

      Irlanda

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 17, Nº. 1, 2015, págs. 85-97
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462015000100007
  • Enlaces
  • Resumen
    • español

      En este artículo definimos una nueva medida de no-compacidad sobre y estudiamos sus propiedades. Como aplicación, estudiamos la existencia de soluciones para una clase de ecuaciones integrales funcionales no lineales usando el teorema de punto fijo de Darbo asociado a esta nueva medida de no-compacidad.

    • English

      In this paper we define a new measure of noncompactness on and study its properties. As an application we study the existence of solutions for a class of nonlinear functional integral equations using Darbo’s fixed point theorem associated with this new measure of noncompactness.

  • Referencias bibliográficas
    • Agarwal, R,Meehan, M,O’Regan, D. (2004). Fixed point theory and applications. Cambridge University Press.
    • Aghajani, A,Banás, J,Jalilian, Y. (2011). Existence of solution for a class nonlinear Volterra sigular integral. Comput. Math. Appl. 62. 1215-1227
    • Aghajani, A,Jalilian, Y. (2010). Existence and global attractivity of solutions of a nonlinear functional integral equation. Commun. Nonlinear...
    • Aghajani, A,Shole Haghighi, A. (2014). Existence of solutions for a class of functional integral equations of Volterra type in two variables...
    • Akmerov, R.R,Kamenski, M.I,Potapov, A.S,Rodkina, A.E,Sadovskii, B.N. (1992). Measures of Noncompactness and Condensing Operators. Birkhauser...
    • Banás, J,Dhage, B.C. (2008). Global asymptotic stability of solutions of a functional integral equation. Nonlinear Anal. 69. 1945-1952
    • Banás, J,Goebel, K. (1980). Measures of Noncompactness in Banach Spaces: Lecture Notes in Pure and Applied Mathematics. Dekker. New York.
    • Banás, J,Paslawska-Poludnik, M. (2004). Monotonic Solutions of Urysohn Integral Equation on Unbounded Interval. Comput. Math. Appl. 47. 1947-1954
    • Banás, J,Rzepka, R. (2003). an application of a measure of noncompactness in the study of asymptotic stability. Appl. Math. Lett. 16. 1-6
    • Banás, J,O’Regan, D,Sadarangani, K. (2009). On solutions of a quadratic hammerstein integral equation on an unbounded interval. Dynam. Systems...
    • Brezis, H. (2011). Functional Analysis: Sobolev Spaces and Partial Differential Equations. Springer. New YorkDordrechtHeidelbergLondon.
    • Darbo, G. (1955). Punti uniti in trasformazioni a codominio non compatto. Rend. Sem. Mat. Univ. Padova. 24. 84-92
    • Darwish, M. (2012). On a perturbed functional integral equation of Urysohn type. Appl. Math. Com- put. 218. 8800-8805
    • Gomaa El-Sayed, W. (1997). Nonlinear functional integral equations of convolution type. Port. Math. 54. 449-456
    • Folland, B. (1999). Real Analysis. A Wiley-Interscience Publication.
    • Darwish, M.A,Henderson, J,O’Regan, D. (2011). Existence and asymptotic stability of solutions of a perturbed fractional functional-integral...
    • Dhage, B.C,Bellale, S.S. (2008). Local asymptotic stability for nonlinear quadratic functional integral equations. Electron. J. Qual. Theory...
    • Ha-Olsen, H,Holden, H. (2010). The Kolmogorov-Riesz compactness theorem. Expo. Math. 28. 385-394
    • Kuratowski, K. (1930). Sur les espaces complets. Fund. Math. 15. 301-309
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno