Ir al contenido

Documat


Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulses

  • Alka Chadha [1] ; Dwijendra N Pandey [1]
    1. [1] Indian Institute of Technology Roorkee Department of Mathematics
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 17, Nº. 1, 2015, págs. 11-27
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462015000100002
  • Enlaces
  • Resumen
    • español

      Este artí­culo estudia las ecuaciones diferenciales de orden entero/fraccional con condiciones de frontera periódicas con un argumento desviado e impulsos integrables en espacios de Banach arbitrarios X donde los pulsos no son instantáneos. Utilizando teoremas de punto fijo, establecemos la existencia y unicidad de soluciones temperadas para los sistemas diferenciales de orden entero, y luego obtenemos resultados de existencia para soluciones temperadas del sistema diferencial de orden fraccional. Además, presentamos un ejemplo para mostrar la efectividad de la teorí­a abstracta discutida.

    • English

      This paper deals with periodic BVP for integer/fractional order differential equations with a deviated argument and integrable impulses in arbitrary Banach space X for which the impulses are not instantaneous. By utilizing fixed point theorems, we firstly establish the existence and uniqueness of the mild solution for the integer order differential system and secondly obtain the existence results for the mild solution to the fractional order differential system. Also at the end, we present some examples to show the effectiveness of the discussed abstract theory.

  • Referencias bibliográficas
    • Benchohra, M,Henderson, J,Ntouyas, S. K. (2006). Impulsive Differential Equations and Inclusions, Contemporary Mathematics and Its Applications....
    • Lakshmikantham, V,Bainov, D. D,Simeonov, P.S. (1989). Theory of Impulsive Differential Equations. World Scientific. SingaporeLondon.
    • Kumar, P,Pandey, D. N,Bahuguna, D. (2014). Impulsive boundary value problems for fractional differential equations with deviating arguments....
    • Hernández, E,O’Regan, D. (2012). On a new class of abstract impulsive differential equations. Proc. Amer. Math. Soc. 141. 1641-1649
    • Pierri, M,O’ Regan, D,Rolnik, V. (2013). Existence of solutions for semilinear abstract differential equation with not instantaneous impulsive....
    • Chadha, A,Pandey, D. N. (2014). Existence of the mild solution for impulsive semilinear differential equation. Int. J. Partial. Diff. Equat....
    • Wang, J. R,Li, X. (2014). Periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses. J. Appl....
    • Feckan, M,Zhou, Y,Wang, J. (2012). On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear...
    • Balachandran, K,Samuel, F. C. (2009). Existence of mild solutions for integrodifferential equations with impulsive conditions. Electr. J....
    • Ahmad, B,Ntouyas, S. K,Alsaedi, A. (2013). An existence result for fractional differential inclusions with nonlinear integral boundary conditions....
    • Ahmed, H. M,Hassan, A. A. M,Ghanem, A. S. (2014). Existence of mild solution for impulsive fractional differential equations with non-local...
    • Liu, Y,Ahmad, B. (2014). A study of impulsive multiterm fractional differential equations with single and multiple base points and applications....
    • Miller, K. S,Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equation. John Wiley and Sons, Inc. New...
    • Samko, S. G,Kilbas, A. A,Marichev, O. I. (1993). Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science...
    • Kilbas, A. A,Srivastava, H. M,Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations. Elsevier. Amsterdam.
    • Podlubny, I. (1999). Fractional Differential Equations. Mathe. Sci. Eng. 198.
    • Liu, X,Jia, M,Wu, B. (2009). Existence and uniqueness of solution for fractional differential equations with integral boundary conditions....
    • Ahmad, A,Alsaedi, A,Alghamdi, B. S. (2008). Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions....
    • Ahmad, B,Nieto, J. J. (2009). Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral...
    • Muslim, M,Bahuguna, D. (2008). Existence of solutions to neutral differential equations with deviated arguments. Elect. J. Qualit. Theory...
    • Haloi, R,Pandey, D. N,Bahuguna, D. (2011). Existence of solutions to a non-autonomous abstract neutral differential equation with deviated...
    • El’sgol’ts, L. E,Norkin, S. B. (1973). Introduction to the Theory of Differential Equations with Deviating Arguments. Academic Press.
    • Lv, Z.-W,Xiao, J.-J. (2010). Solutions to fractional differential equation with nonlocal initial conditions in Banach space. Adv. Diff. Equ....
    • Gal, C. G. (2007). Nonlinear abstract differential equations with deviated argument. J. Math. Anal. Appl. 333. 971-983
    • He, X,Xie, J,Chen, G,Shen, J. (2010). Integral BVPs for a class of first order impulsive functional differential equations. Int. J. Diff....
    • Song, G,Zhao, Y,Sun, X. (2011). Integral boundary value problems for first order impulsive integrodifferential equations of mixed type. J....
    • Chang, Y. K,Anguraj, A,Karthikeyan, P. (2011). Existence results for initial value problems with integral conditions for impulsive fractional...
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno