Ir al contenido

Documat


A girsanov formula associated to a big order pseudo-differential operator

  • Rémi Léandre [1]
    1. [1] University of Franche-Comté

      University of Franche-Comté

      Arrondissement de Besançon, Francia

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 15, Nº. 1, 2013, págs. 113-117
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462013000100007
  • Enlaces
  • Resumen
    • español

      Entregamos una fórmula de cuasi-invarianza relacionada con un semigrupo generado por un operador seudo-diferencial elíptico de orden superior.

    • English

      We give a quasi-invariance formula involved with a semi-group generated by a big order elliptic pseudo-differential operator.

  • Referencias bibliográficas
    • Davies, B. (1995). Unifomly elliptic operators with measurable coefficients. J. Funct. Ana.. 132. 141-169
    • Dellacherie, C,Meyer, P.A. (1978). Probabilités et potentiel. Hermann. Paris.
    • Dieudonné, J. (1977). Eléments d'analyse. Gauthiers-Villars. Paris.
    • H'ormander, L. (1984). The analysis of linear partial operators. Springer. Berlin.
    • H'ormander, L. (1984). The analysis of linear partial operators. Springer. Berlin.
    • Ikeda, N,Watanabe, S. (1989). Stochastic differential equations and diffusion processes. 2. North-Holland.
    • Léandre, R. (2008). Itô-Stratonovitch for a four order operator on a torus. Non-Euclidean geometry and its applications. 42. 133-138
    • Léandre, R. (2009). Itô-Stratonovitch for the Schroedinger equation associated to a big order operator on a torus. Fractional Order differentiation....
    • Léandre, R. (2010). Computations of stochastic systems. Trans. Comp. Sciences..
    • Léandre, R. (2010). ISAAC 2009. World Scientific.
    • Léandre, R. (2010). Stochastic analysis without probability: study of some basic tools. Journal Pseudo Differential Operators and Applications....
    • Léandre, R. (2011). Long time behaviour on a path group of the heat semi-group associated to a bilaplacian. Symmetry measures on complex networks....
    • Léandre, R. (2012). A path-integral approach to the Cameron-Martin-Maruyama- Girsanov formula associated to a Bilaplacian. Integral and differential...
    • Léandre, R. (2011). A generalized Fock space associated to a Bilaplacian. 2011 World Congress Engineering Technology.
    • Léandre, R. (2012). An Itô formula for an accretive operator. Axioms: feature papers. Axioms 1. 4-8
    • Léandre, R. Stochastic analysis for a non-markovian generator: an introduction.
    • Rogers, L.C.G,Williams, D. (1987). Stochastic differential equations and martingales. Itô Calculus, Wiley. ^eNew-York New-York.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno