Ir al contenido

Documat


About cumulative idle time model of the message switching system

  • S Minkevičius [1]
    1. [1] Institute of Mathematics and Informatics

      Institute of Mathematics and Informatics

      Bulgaria

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 15, Nº. 2, 2013, págs. 53-64
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462013000200005
  • Enlaces
  • Resumen
    • español

      El propósito de esta investigación en la teorí­a de colas es el teorema sobre la ley de logaritmo iterado en sistemas multifase y su aplicación al modelo matemático del sistema de interruptores de mensajes. Primero, la ley de logaritmo iterado se prueba para el tiempo ocioso acumulado de un cliente. Finalmente presentamos una aplicación del teorema probado para el modelo de sistema de interruptores de mensajes.

    • English

      The purpose of this research in the queueing theory is the theorem about the law of the iterated logarithm in multiphase queueing systems and its application to the mathematical model of the message switching system. First the law of the iterated logarithm is proved for the cumulative idle time of a customer. Finally we present an application of the proved theorem for the model of the message switching system.

  • Referencias bibliográficas
    • Billinsley, P. (1968). Convergence of probability measures. Wiley. ^eNew York New York.
    • Borovkov, A. (1972). Stochastic Processes in Queueing Theory. Nauka. Moscow.
    • Borovkov, A. (1980). Asymptotic Methods in Theory of Queues. Nauka. Moscow.
    • Iglehart, D. L,Whitt, W. (1970). Multiple channel queues in heavy traffic. I. Advances in Applied Probability. 2. 150-177
    • Iglehart, D. L,Whitt, W. (1970). Multiple channel queues in heavy traffic. II. Sequences, networks and batches. Advances in Applied Probability....
    • Iglehart, D. L. (1971). Multiple channel queues in heavy traffic. IV. Law of the iterated logarithm. Zeitschrift für Wahrscheinlichkeitstheorie...
    • Karpelevich, F. I,Kreinin, A. I. (1994). Heavy traffic limits for multiphase queues. American Mathematical Society. Providence.
    • Kella, O. (1992). Concavity and reflected Levy process. Journal of Applied Probability. 29. 209-215
    • Kingman, J. (1961). On queues in heavy traffic. J. R. Statist. Soc. 24. 383-392
    • Kingman, J. (1962). The single server queue in heavy traffic. Proc. Camb. Phil. Soc. 57. 902-904
    • Kobyashi, H. (1974). Application of the diffusion approximation to queueing networks. Journal of ACM. 21. 316-328
    • Milch, P,Waggoner, M. (1970). A random walk approach to a shutdown queueing system. SIAM J. Appl. Math. 19. 103-115
    • Minkevičius, S. (1986). Weak convergence in multiphase queues. Lietuvos Matematikos Rinkinys. 26. 717-722
    • Minkevičius, S. (2005). On the full idle time in multiphase queues. Lietuvos Matematikos Rinkinys.
    • Minkevičius, S,Kulvietis, G. (2004). A mathematical model of the message switching system. 2. Proceedings of the Seventh International Conference...
    • Pike, M. (1963). Some numerical results for the queueing system D/Ek/1. J. R. Statist. Soc. Ser. B. 25. 477-488
    • Puhalskii, A. (1999). Moderate deviations for queues in critical loading. Queueing Systems Theory Appl. 31. 359-392
    • Reiman, M. I. (1984). Open queueing networks in heavy traffic. Mathematics of Operations Research. 9. 441-459
    • Ridel, M. (1976). Conditions for stationarity in a single server queueing system. Zastos. Mat. 15. 17-24
    • Saati, T,Kerns, K. (1971). Analytic Planning: Organization of Systems. Mir. Moscow.
    • Strassen, V. (1964). An invariance principle for the law of the iterated logarithm. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte...
    • Takacs, L. (1974). Lecture Notes in Economics and Mathematical Systems. Springer-Verlag. Heidelberg^eBerlin^eNew York BerlinNew York.
    • Whitt, W. (2000). Limits for cumulative input processes to queues. Probab. Engrg. Inform. Sci. 14. 123-150
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno