Ir al contenido

Documat


On quasi-conformally flat and quasi-conformally semisymmetric generalized Sasakian-space-forms

  • D.G Prakasha [1] ; H.G Nagaraja [2]
    1. [1] Karnatak University

      Karnatak University

      India

    2. [2] Bangalore University Department of Mathematics Central College Campus
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 15, Nº. 3, 2013, págs. 59-70
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462013000300007
  • Enlaces
  • Resumen
    • español

      El objeto del artí­culo actual es estudiar formas de espacio Sasakian cuasi-conformacionales planas y cuasi-conformacionales generalizadas semisimétricas.

    • English

      The object of the present paper is to study quasi-conformally flat and quasi-conformally semisymmetric generalized Sasakian-space-forms.

  • Referencias bibliográficas
    • Alegre, P,Blair, D,Carriazo, A. (2004). Generalized Sasakian-space-forms. Israel J. Math. 14. 157-183
    • Alegre, P,Carriazo, A. (2008). Structures on generalized Sasakian-space-form. Differential Geom. and its application. 26. 656-666
    • Amur, K,Maralabhavi, Y.B. (1977). On quasi-conformally flat spaces. Tensor (N.S.). 31. 194-198
    • Blair, D.E. (1976). Contact manifolds in Riemannian Geometry: Lecture Notes in Mathematics. Springer-Verlag. Berlin.
    • De, U.C,Sarkar, A. (2010). Some results on generalized Sasakian-space-forms. Thai J. Math. 8. 1-10
    • De, U.C,Sarkar, A. (2010). On the projective curvature tensor of generalized Sasakian-space- forms. Quaestiones Mathematicae. 33. 245-252
    • Deszcz, R. (1998). On the equivalance of Ricci-semisymmetry and semisymmetry. Dept. Math. Agri-cultural Univ. Wroclaw. 64.
    • Eisenhart, L.P. (1949). Riemannian Geometry. Princeton University Press. princeton^eN. J N. J.
    • Kenmotsu, K. (1972). A class of almost contact Riemannian manifolds. Tohoku Math.J. 24. 93-103
    • Kim, U.K. (2006). Conformally flat generalized Sasakian-space-forms and locally symmetri generalized Sasakian-space-forms. Note di matemetica....
    • Ludden, L.D. (1970). Submanifolds of cosymplectic manifolds. J.Diff Geom. 4. 237-244
    • Prakasha, D.G. (2012). On generalized Sasakian-space-forms with Weyl-conformal curvature tensor. Lobacheviskii J. Math. 33. 223-228
    • Szabo, Z.I. (1982). Structures theorems on Riemannian spaces satisfying R(X, Y) · R = 0, I. The local version J. Diff. Geom. 17. 531-582
    • Yano, K,Sawaki, S. (1968). Riemannian manifolds admitting a conformal transformation group. J. Diff Geom. 2. 161-184
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno