Ir al contenido

Documat


Approximating a solution of an equilibrium problem by Viscosity iteration involving a nonexpansive semigroup

  • Binayak S Choudhury [1] ; Subhajit Kundu [1]
    1. [1] Bengal Engineering and Science University Shibpur Department of Mathematics
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 15, Nº. 3, 2013, págs. 9-18
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462013000300002
  • Enlaces
  • Resumen
    • español

      En este artículo hemos definido una iteración nueva para resolver un problema de equilibrio en espacios de Hilbert. La iteración que introducimos es de tipo viscoso e involucra un semigrupo de operadores no expansivos. Hemos establecido que dependiendo de las condiciones de control, nuestra iteración converge fuertemente a una solución de un problema de equilibrio.

    • English

      In this paper we have defined a new iteration in order to solve an equilibrium problem in Hilbert spaces. The iteration we have introduced is a viscosity type iteration and involves a semigroup of nonexpansive operators. We have established that depending on some control conditions, our iteration strongly converges to a solution of the equilibrium problem.

  • Referencias bibliográficas
    • Baillon, J. B. (1975). Un theorème de type ergodique pour les contractions non linèaires dans un espace de Hilbert. C.R. Acad. Sci. Paris...
    • Baillon, J. B,Brèzis, H. (1976). Une remarque sur le comportement asymptotique des semigroupes non linèaires. Houston J. Math. 2. 5-7
    • Blum, E,Oettli, W. (1994). From optimization and variational inequalities to equilibrium problems. Math. Student. 63. 123-145
    • Browder, F. E. (1967). Convergence of approximants of fixed points of nonexpansive nonlinear mappings in Banach spaces. Arch. Ration. Mech....
    • Buong, N. (2010). Strong convergence theorem for nonexpansive semigroups in Hilbert space. Nonlinear Anal. 72. 4534-4540
    • Ceng, L. C,Schaible, S,Yao, J. C. (2009). Approximate solutions of variational inequalities on sets of common fixed points of a one parameter...
    • Chen, R,Song, Y. (2007). Convergence to common fixed point of nonexpansive semigroups. J.Comp.Appl.Math. 200. 566-575
    • Cianciaruso, F,Marino, G,Mugila, L. (2010). Iterative Methods for Equilibrium and Fixed point Problems for Nonexpansive Semigroups in Hilbert...
    • Combettes, P. L,Hirstoaga, S.A. (2005). Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6. 117-136
    • Inchan, I. (2011). Hybrid extragradient method for general equilibrium problems and fixed point problems in Hilbert space. Nonlinear Anal.Hybrid...
    • Li, S,Li, L,Su, Y. (2009). General iterative methods for a one parameter nonexpansive semigroup in Hilbert space. Nonlinear Anal. 70. 3065-3071
    • Li, X. N,Gu, J. S. (2010). Strong convergence of modified Ishikawa iteration for a nonexpansive semigroup in Banach spaces. Nonlinear Anal....
    • Lin, Q. (2009). Viscosity approximation to common fixed points of a nonexpansive semigroup with a generalized contraction mapping. Nonlinear...
    • Liu, L. S. (1995). Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach space. J.Math.Anal.Appl....
    • Moudafi, A. (2000). Viscosity approximation methods for fixed point problems. J.Math.Anal.Appl. 241. 46-55
    • Qin, X,Cho, Y. J,Kang, S.M. (2010). Viscosity approximation methods for generalized equilibrium problems and fixed point problems with application....
    • Song, Y,Xu, S. (2008). Strong convergence theorems for nonexpansive semigroup in Banach spaces. J.Math.Anal.Appl. 338. 152-161
    • Shimizu, T,Takahashi, W. (1997). Strong convergence to common fixed points of families of nonexpansive mappings. J.Math.Anal.Appl. 211. 71-83
    • Tada, A,Takahashi, W. (2007). Strong convergence theorem for an equilibrium problem and a nonexpansive mapping. J.Optim.Theory Appl. 133....
    • Takahashi, S,Takahashi, W. (2007). Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J....
    • Zegeye, H,Shahzad, N. (2010). Strong convergence theorems for a finite family of nonexpansive mappings and semigroups via hybrid method. Nonlinear...
    • Zhang, S,Rao, R,Huang, J. (2009). Strong convergence theorem for a generalized equilibrium problem and a k-strict pseudocontraction in Hilbert...
    • Xu, H.. (2002). Iterative algorithms for nonlinear operators. J. London Math. Soc. 2. 240-256
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno