Ir al contenido

Documat


Existence of ψ-bounded solutions for linear matrix difference equations on z+

  • G. Suresh Kumar [1] ; Ch Vasavi [1] ; T.S Rao [1] ; M.S.N Murty [2]
    1. [1] Koneru Lakshmaiah University Department of Mathematics
    2. [2] Acharya Nagarjuna University Department of Mathematics
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 16, Nº. 1, 2014, págs. 37-48
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462014000100004
  • Enlaces
  • Resumen
    • español

      Este artículo se enfoca en obtener condiciones necesarias y suficientes para la existencia de la menos una solución Ψ-acotada para la ecuación lineal en diferencias matricial X (n + 1) = A (n) X (n) B (n) + F (n), donde F (n) es una función Ψ-sumable con valores matriciales en Z+.Finalmente, probamos un resultado relacionado al comportamiento asintótico de las soluciones Ψ-acotadas de esta ecuación en Z+.

    • English

      This paper deals with obtaining necessary and sufficient conditions for the existence of at least one -bounded solution for the linear matrix difference equation X (n + 1) = A (n) X (n) B (n) + F (n), where F (n) is a Ψ-summable matrix valued function on Z+.Finally, we prove a result relating to the asymptotic behavior of the Ψ-bounded solutions of this equation on Z+.

  • Referencias bibliográficas
    • Agarwal, R.P. (2000). Difference Equations and Inequalities. Marcel Dekker. New York.
    • Agarwal, R.P,Wong, P.J.Y. (1997). Advanced Topics in Difference Equations. Kluwer. Dordrecht.
    • Akinyele, O. (1978). On partial stability and boundedness of degree k. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 8. 259-264
    • Avramescu, C. (1968). Asupra comportării asimptotice a soluţiilor unor ecuaţii funcţionale. Analele Universităţii din Timişoara, Seria Ştiinţe...
    • Constantin, A. (1992). Asymptotic properties of solutions of differential equations. Analele Universităţii din Timişoara, Seria Ştiinţe Matematice....
    • Coppel, W.A. (1963). Stability and asymptotic behavior of differential equations. Heath. Boston.
    • Diamandescu, A. (2004). Existence of Ψ-bounded solutions for a system of differential equation. Electronic Journal of Differential Equations....
    • Diamandescu, A. (2008). Existence of Ψ-bounded solutions for linear difference equations on. Electronic Journal of Qualitative Theory of Differential...
    • Diamandescu, A. (2009). Ψ-bounded solutions for liner differential systems with lebesgue Ψ-integrable functions on as right-hand sides. Electronic...
    • Diamandescu, A. (2009). On Ψ-bounded solutions of a Lyapunov matrix differential equation. Electronic Journal of Qualitative Theory of Differential...
    • Diamandescu, A. (2010). Existence of Ψ-bounded solutions for nonhomogeneous linear difference equations. Applied Mathematics E-Notes. 10....
    • Graham, A. (1981). Kronecker Products and Matrix Calculus: With Applications. Ellis Horwood Ltd.
    • Hallam, T. G. (1969). On asymptotic equivalence of the bounded solutions of two systems of differential equations. Mich. Math. Journal. 16....
    • Hong, J,Núñez, C. (1998). The almost periodic type difference equations. Math. Comput. Modeling. 28. 21-31
    • Han, Y,Hong, J. (2007). Existence of Ψ-bounded solutions for linear difference equations. Applied Mathematics Letters. 20. 301-305
    • Morchalo, J. (1990). : On Ψ-Lp-stability of nonlinear systems of differential equations. Analele Sţiinţifice ale Universităţii "Al. I....
    • Murty, K.N,Anand, P.V.S,Lakshmi Prasannam, V. (1997). First order difference systems - existence and uniqueness. Proceedings of the American...
    • Murty, M.S.N,Suresh Kumar, G. (2008). On Ψ-Boundedness and Ψ-stability of matrix Lyapunov Systems. Journal of Applied Mathematics and Computing....
    • Murty, M.S.N,Suresh Kumar, G. (2009). On Ψ-Bounded solutions for non-homogeneous matrix Lyapunov systems on R. Electronic Journal of Qualitative...
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno