Ir al contenido

Documat


Existence of blow-up solutions for quasilinear elliptic equation with nonlinear gradient term

  • Fang Li [1] ; Zuodong Yang [2]
    1. [1] Nanjing Normal University School of Mathematical Sciences Institute of Mathematics
    2. [2] Nanjing Normal University School of Teacher Education
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 16, Nº. 2, 2014, págs. 53-70
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462014000200004
  • Enlaces
  • Resumen
    • español

      En este artículo consideramos la ecuación elíptica cuasilineal en un dominio acotado suave. Usando el método de sub y súper soluciones, estudiamos la existencia, comportamiento asintótico cerca de la frontera y la unicidad de soluciones explosivas para ecuaciones elípticas cuasilineales con término del gradiente nolineal.

    • English

      In this paper, we consider the quasilinear elliptic equation in a smooth bounded domain. By using the method of lower and upper solutions, we study the existence, asymptotic behavior near the boundary and uniqueness of the positive blow-up solutions for quasilinear elliptic equation with nonlinear gradient term.

  • Referencias bibliográficas
    • Bandle, C,Giarrosso, E. (1996). Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms. Adv.Differential Equations....
    • Ghergu, M,Niculescu, C,Râdulescu, V. (2002). Explosive solutions of elliptic equations with absorption and non-linear gradient term. Proceedings...
    • Yang, Zuodong. (2006). Existence of explosive positive solutions of quasilinear elliptic equations. Applied Mathematics and Computation. 177....
    • Lu, Qishao,Yang, Zuodong,Twizell, E.H. (2004). Existence of entire explosive positive solutions of quasilinear elliptic equations. Applied...
    • Liu, Cunlian,Yang, Zuodong. (2008). Existence of large solutions for a quasilinear elliptic problem via explosive sub-supersolutions. Applied...
    • Liu, Cunlian,Yang, Zuodong. (2007). Existence of large solutions for quasilinear elliptic problems with a gradient term. Applied Mathematics...
    • Liu, Cunlian,Yang, Zuodong. (2008). Boundary blow-up quasilinear elliptic problems of the Bieberbach type with nonlinear gradient terms. Nonlinear...
    • Liu, Cunlian,Yang, Zuodong. (2010). A Boundary blow-up for a class of quasilinear elliptic problems with gradient term. J.Appl. Math. Comput....
    • Du, Y. H. (2005). Maximum Principle and Applications. World Scientific, Press.
    • Chen, Yujuan,Wang, Mingxin. (2011). Large solutions for quasilinear elliptic equation with nonlinear gradient term. Nonlinear Analysis: Real...
    • Goncalves, J. V,Roncaili, A. (2006). Boundary blow-up solutions for a class of elliptic equations on a bounded domain. Appl. Math. Comput....
    • Cirstea, F-C,Du, Y. H. (2005). General uniqueness results and variation speed for blow-up solutions of elliptic equations. Proc. Lond. Math....
    • Delgado, M,Lopez-Gomez, J,Suarez, A. (2004). Singular boundary value problems of a porous media logistic equation. Hiroshima Math. J. 34....
    • Lopez, J. (2003). The boundary blow-up rate of large solutions. J.Differential Equations. 195. 25-45
    • Gladiali, F,Porru, G. (1997). Estimates for explosive solutions to p-Laplace equations. Progress in Partial Differential Equations, Pont--MoussonPitman...
    • Du, Y,Guo, Z. (2003). Boundary blow-up solutions and their applications in quasilinear elliptic equations. J. Anal. Math. 89. 277-302
    • Mohammed, Ahmed. (2007). Boundary asymptotic and uniqueness of solutions to the p-Laplacian with infinite boundary values. J. Math. Anal....
    • Diaz, G,Letelier, R. (1993). Explosive solutions of quasilinear elliptic equation: existence and uniqueness. Nonlinear Anal. 20. 97-125
    • Yang, Zuodong,Xu, Bing,Wu, Mingzhu. (2007). Existence of positive boundary blow-up solutions for quasilinear elliptic equations via sub and...
    • Lazer, A. C,McKenna, P. J. (1993). On a problem of Bieberbach and Rademacher. Nonlinear Anal. 21. 327-335
    • Ladyzhenskaya, O. A,Ural’tseva, N. N. (1968). Linear and Quasilinear Elliptic Equations. Academic Press. New York.
    • Tolksdorf, P. (1983). On the Dirichlet problem for quasilinear equations in domains with conical boundary point. Comm. Partial Differential...
    • Gilbarg, D,Trudinger, N. S. (1983). Elliptic Partial Differential Equations of Second Order. 2. Springer-Verlag, Press. Berlin.
    • Leonori, T. (2007). Large solutions for a class of nonlinear elliptic equations with gradient terms. Adv. Nonlin. Stud. 7. 237-269
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno