Ir al contenido

Documat


Voronovskaya type asymptotic expansions for multivariate quasi-interpolation neural network operators

  • George A Anastassiou [1]
    1. [1] University of Memphis Department of Mathematical Sciences
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 16, Nº. 2, 2014, págs. 33-48
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462014000200002
  • Enlaces
  • Resumen
    • español

      Aquí estudiamos extensiones de la cuasi-interpolación multivariada de operadores de redes neuronales de tipo sigmoidal y tangente hiperbólica de una capa oculta. Obtenemos expansiones asintóticas del tipo Voronovskaya para el error de aproximación de estos operadores para el operador unidad.

    • English

      Here we study further the multivariate quasi-interpolation of sigmoidal and hyperbolic tangent types neural network operators of one hidden layer. We derive multivariate Voronovskaya type asymptotic expansions for the error of approximation of these operators to the unit operator.

  • Referencias bibliográficas
    • Anastassiou, G.A. (2011). Advanced Inequalities. World Scientific Publ. Co. ^eNew Jersey New Jersey.
    • Anastassiou, G.A. (2011). Inteligent Systems: Approximation by Artificial Neural Networks, Intelligent Systems Reference Library. Springer....
    • Anastassiou, G.A. (2011). Univariate hyperbolic tangent neural network approximation. Mathematics and Computer Modelling. 53. 1111-1132
    • Anastassiou, G.A. (2011). Multivariate hyperbolic tangent neural network approximation. Computers and Mathematics. 61. 809-821
    • Anastassiou, G.A. (2011). Multivariate sigmoidal neural network approximation. Neural Networks. 24. 378-386
    • Anastassiou, G.A. (2011). Univariate sigmoidal neural network approximation. submitted for publication, accepted, J. of Computational Analysis...
    • Chen, Z,Cao, F. (2009). The approximation operators with sigmoidal functions. Computers and Mathematics with Applications. 58. 758-765
    • Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. 2. Prentice Hall. New York.
    • McCulloch, W,Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics. 7. 115-133
    • Mitchell, T.M. (1997). Machine Learning. WCB-McGraw-Hill. New York.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno