Ir al contenido

Documat


On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup

  • Autores: Iris A. López P.
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 19, Nº. 2, 2017, págs. 11-31
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462017000200011
  • Enlaces
  • Resumen
    • español

      Resumen: El objetivo de este artículo es demostrar la propiedad hipercontractiva del semigrupo de Dunkl-Ornstein-Uhlenbeck, .. Para lograr esto, probamos que el operador diferencial de Dunkl-Ornstein-Uhlenbeck Lk con k ≥ 0 y asociado al grupo , satisface una desigualdad de curvatura-dimensión, para ser precisos, una C(ρ,∞)-desigualdad, con 0≤ρ≤1. Como una aplicación de este hecho, obtenemos una versión del teorema de multiplicadores de Meyer y a través de este teorema y derivadas fraccionales, obtenemos una caracterización de espacios Dunkl-potenciales.

    • English

      Abstract: The aim of this paper is to prove the hypercontractive propertie of the Dunkl-Ornstein-Uhlenbeck semigroup, . To this end, we prove that the Dunkl-Ornstein-Uhlenbeck differential operator Lk with k ≥ 0 and associated to the group, satisfies a curvature-dimension inequality, to be precise, a C(ρ, ∞)-inequality, with 0≤ρ≤1. As an application of this fact, we get a version of Meyer's multipliers theorem and by means of this theorem and fractional derivatives, we obtain a characterization of Dunkl-potential spaces.

  • Referencias bibliográficas
    • Bakry, D.. (1984). Hypercontractivité de semi-groupes de diffusion,. C.R Acad. Sci. Paris Sér,. 299. 775
    • Bakry, D.. (1994). New Trends in stochastic analysis (Charingworth). Taniguchi-Symposium World. Sci. Publishing.. River Edge N.J.
    • Bakry, D.. (2006). Probability measures on groups: Recent directions and trends. Tata Institute of Fundamental Research. Mumbai.
    • Chihara, T.S. (1978). An introduction to orthogonal polynomials,. Gordon and Breach. New York.
    • Dunkl, C. F.. (1989). Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc,. 311. 167
    • Graczky, P.. (2005). Higher order Riesz transforms, fractional derivatives and Sobolev spaces for Laguerre expansions. J. Math. Pures et Appl....
    • Gross, L.. (1992). Dirichlet forms. Springer, Verling. Varenna.
    • Gross, L.. (1976). Logarithmic Sobolev inequalities. Amer. J. Math.. 97. 1061
    • López, I.. (2004). Fractional differentiation for the Gaussian measure and applications. Bull. Sci. Math. 128. 587-603
    • López, I.. (2009). Operators associated with the Jacobi semigroup,. J. Approx. Theory. 161. 385-410
    • Rösler, M.. (1998). Generalize Hermite polynomials and the heat equation for Dunkl operators. Commun. Math. Phys.. 192. 519
    • Rösler, M.. (1998). Markov processes related with Dunkl operators. Adv. in Appl. Math,. 21. 575-643
    • Rösler, M.. (2002). Orthogonal polynomials and special functions. Springer. Leuven.
    • Rösler, M.. (2008). Harmonic and stochastic analysis of Dunkl processes. Hermann. Paris.
    • Stein, E.. (1961). The Characterization of Functions Arising as Potentials I. Bull. Amer. Math. Soc.. 97. 102
    • Stein, E.. (1971). Topics in Harmonic Analysis related to the Littlewood-Paley Theory. Princenton Univ. Press.. Princenton.
    • Sugita, H.. (1985). Sobolev spaces of Wiener functionals and Malliavin's calculus. J. Math. Kyoto Univ,. 25. 31-48
    • Watanabe, S.. (1984). Lectures on Stochastic differential equations and Malliavin Calculus,. Springer Verlag. Berlin/Heidelberg/New York/Tokyo....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno