Ir al contenido

Documat


On an a priori L ∞ estimate for a class of Monge-Ampère type equations on compact almost Hermitian manifolds

  • Autores: Masaya Kawamura
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 24, Nº. 2, 2022, págs. 239-261
  • Idioma: inglés
  • DOI: 10.56754/0719-0646.2402.0239
  • Enlaces
  • Resumen
    • español

      RESUMEN Investigamos ecuaciones de tipo Monge-Ampère en variedades casi Hermitianas y mostramos una estimación L ∞ a priori para una solución suave de estas ecuaciones.

    • English

      ABSTRACT We investigate Monge-Ampère type equations on almost Hermitian manifolds and show an a priori L ∞ estimate for a smooth solution of these equations.

  • Referencias bibliográficas
    • Chen, L.. (2021). Hessian equations of Krylov type on Kähler manifolds. arXiv:.
    • Chu, J.,Tosatti, V.,Weinkove, B.. (2019). The Monge-Ampère equation for non-integrable almost complex structures. J. Eur. Math. Soc.. 21....
    • Gauduchon, P.. (1977). Le théorème de l’excentricité nulle. C. R. Acad. Sci. Paris. 285. 387
    • Newlander, A.,Nirenberg, L.. (1957). Complex analytic coordinates in almost complex manifolds. Ann. of Math.. 65. 391-404
    • Sun, W.. (2016). On a class of fully nonlinear elliptic equations on closed Hermitian manifolds. J. Geom. Anal.. 26. 2459
    • Sun, W.. (2017). On a class of fully nonlinear elliptic equations on closed Hermitian manifolds II: L∞ estimate. Comm. Pure Appl. Math.. 70....
    • Tosatti, V.,Weinkove, B.. (2010). Estimates for the complex Monge-Ampère équation on Hermitian and balanced manifolds. Asian J. Math.. 14....
    • Tosatti, V.,Weinkove, B.. (2010). The complex Monge-Ampère equation on compact Hermitian manifolds. J. Amer. Math. Soc.. 23. 1187
    • Tu, Q.,Xiang, N.. (2022). The Dirichlet problem for mixed Hessian equations on Hermitian manifolds. arXiv:.
    • Vezzoni, L.. (2011). On Hermitian curvature flow on almost complex manifolds. Differential Geom. Appl.. 29. 709
    • Yu, C.-J.. (2015). Nonpositively curved almost Hermitian metrics on products of compact almost complex manifolds. Acta Math. Sin.. 31. 61-70
    • Zhang, J.. (2022). Monge-Ampère type equations on almost Hermitian manifolds. arXiv:.
    • Zheng, T.. (2018). An almost complex Chern-Ricci flow. J. Geom. Anal.. 28. 2129
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno