Ir al contenido

Documat


A characterization of 𝔽q-linear subsets of affine spaces 𝔽n q2

  • Autores: Edoardo Ballico
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 24, Nº. 1, 2022, págs. 95-103
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462022000100095
  • Enlaces
  • Resumen
    • español

      RESUMEN Sea q una potencia de primo impar. Discutimos posibles definiciones sobre 𝔽q2 (usando la forma Hermitiana) de círculos, segmentos unitarios y semi-líneas. Si usamos nuestros segmentos unitarios para definir las cápsulas convexas de un conjunto S ⊂ 𝔽n q2 for q ∉ {3, 5, 9} simplemente obtenemos el 𝔽q -generado afín de S.

    • English

      ABSTRACT Let q be an odd prime power. We discuss possible definitions over 𝔽q2 (using the Hermitian form) of circles, unit segments and half-lines. If we use our unit segments to define the convex hulls of a set S ⊂ 𝔽n q2 for q ∉ {3, 5, 9} we just get the 𝔽q-affine span of S.

  • Referencias bibliográficas
    • Ballico, E.. (2017). On the numerical range of matrices over a finite field. Linear Algebra Appl.. 512. 162
    • Ballico, E.. (2018). Corrigendum to “On the numerical range of matrices over a finite field”. Linear Algebra Appl.. 556. 421
    • Ballico, E.. (2018). The Hermitian null-range of a matrix over a finite field. Electron. J. Linear Algebra. 34. 205
    • Ballico, E.. A numerical range characterization of unitary matrices over a finite field. Asian-European Journal of Mathematics.
    • Bonsall, F. F.,Duncan, J.. (1973). Numerical ranges II. Cambridge University Press. New York-London.
    • Camenga, K.,Collins, B.,Hoefer, G.,Quezada, J.,Willson, J.,Yates, R. J.. (2021). On the geometry of numerical ranges over finite fields. Linear...
    • Chorianopoulos, Ch.,Karanasios, S.,Psarrakos, P.. (2009). A definition of numerical range of rectangular matrices. Linear Multilinear Algebra....
    • Coons, J. I.,Jenkins, J.,Knowles, D.,Luke, R. A.,Rault, P. X.. (2016). Numerical ranges over finite fields. Linear Algebra Appl.. 501. 37-47
    • Gustafson, K. E.,Rao, D. K. M.. (1997). Numerical range. Springer-Verlag. New York.
    • Hirschfeld, J. W. P.. (1979). Projective geometries over finite fields. The Clarendon Press, Oxford University Press. New York.
    • Hirschfeld, J. W. P.,Thas, J. A.. (1991). General Galois geometries. The Clarendon Press, Oxford University Press. New York.
    • Horn, R. A.,Johnson, C. R.. (1985). Matrix analysis. Cambridge University Press. Cambridge.
    • Horn, R. A.,Johnson, C. R.. (1991). Topics in matrix analysis. Cambridge University Press. Cambridge.
    • Jin, L.. (2014). Quantum stabilizer codes from maximal curves. IEEE Trans. Inform. Theory. 60. 313
    • (1990). A classical introduction to modern number theory. Springer-Verlag. New York.
    • Ke, R.,Li, W.,Ng, M. K.. (2016). Numerical ranges of tensors. Linear Algebra Appl.. 508. 100
    • Kim, J.-L.,Matthews, G. L.. (2008). Advances in algebraic geometry codes. World Sci. Publ.. Hackensack, NJ.
    • Lidl, R.,Niederreiter, H.. (1997). Encyclopedia of Mathematics and its Applications. Cambridge University Press. Cambridge.
    • Lidl, R.,Niederreiter, H.. (1994). Introduction to finite fields and their applications. Cambridge University Press. Cambridge.
    • Munuera, C.,Tenório, W.,Torres, F.. (2016). Quantum error-correcting codes from algebraic geometry codes of Castle type. Quantum Inf. Process.....
    • Psarrakos, P. J.,Tsatsomeros, M. J.. (2004). Numerical range: (in) a matrix nutshell. National Technical University. Athens, Greece.
    • Small, C.. (1991). Arithmetic of finite fields. Marcel Dekker, Inc.. New York.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno