Ir al contenido

Documat


Quasi bi-slant submersions in contact geometry

  • Autores: Rajendra Prasad, Mehmet Akif Akyol, Sushil Kumar, Punit Kumar Singh
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 24, Nº. 1, 2022, págs. 1-20
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462022000100001
  • Enlaces
  • Resumen
    • español

      RESUMEN El objetivo de este artículo es introducir el concepto de sub-mersiones cuasi bi-inclinadas desde variedades casi contacto métricas hacia variedades Riemannianas, como una generalización de submersiones semi-inclinadas y hemi-inclinadas. Principalmente nos enfocamos en submersiones cuasi bi-inclinadas desde variedades cosimplécticas. Damos algunos ejemplos no triviales y estudiamos la geometría de hojas de distribuciones que están involucradas en la definición de la sumersión. Más aún, encontramos algunas condiciones para que estas submersiones sean integrables y totalmente geodésicas.

    • English

      ABSTRACT The aim of the paper is to introduce the concept of quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds as a generalization of semi-slant and hemi-slant submersions. We mainly focus on quasi bi-slant submersions from cosymplectic manifolds. We give some non-trivial examples and study the geometry of leaves of distributions which are involved in the definition of the sub-mersion. Moreover, we find some conditions for such sub-mersions to be integrable and totally geodesic.

  • Referencias bibliográficas
    • Akyol, M. A.. (2017). Conformal anti-invariant submersions from cosymplectic manifolds. Hacet. J. Math. Stat.. 46. 177
    • Akyol, M. A.,Şahin, B.. (2019). Conformal slant submersions. Hacet. J. Math. Stat.. 48. 28-44
    • Akyol, M. A.. (2017). Conformal semi-slant submersions. Int. J. Geom. Methods Mod. Phys.. 14.
    • Baird, P.,Wood, J. C.. (2003). Harmonic morphism between Riemannian manifolds.
    • Blair, D. E.. (2002). Riemannian geometry of contact and symplectic manifolds. Birkhäuser. Boston.
    • Cengizhan, M.,Erken, I. K.. (2015). Anti-invariant Riemannian submersions from cosymplectic manifolds onto Riemannian submersions. Filomat....
    • Bourguignon, J.-P.,Lawson, H. B. (1981). Stability and isolation phenomena for Yang-Mills fields. Comm. Math. Phys.. 79. 189-230
    • Bourguignon, J.-P.. (1989). A mathematician’s visit to Kaluza-Klein theory. Rend. Sem. Mat. Univ. Politec. Torino. 143
    • Chinea, D.. (1985). Almost contact metric submersions. Rend. Circ. Mat. Palermo. 34. 89-104
    • Falcitelli, M.,Pastore, A. M.,Ianus, S.. (2004). Riemannian submersions and related topics. World Scientific. River Edge, NJ,.
    • Gray, A.. (1967). Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech.. 16. 715
    • Gündüzalp, Y.. (2018). Conformal slant submersions from cosymplectic manifolds. Turkish J. Math.. 42. 2672
    • Ianuş, S.,Visinescu, M.. (1987). Kaluza-Klein theory with scalar fields and generalized Hopf manifolds. Classical Quantum Gravity. 4. 1317
    • Ianuş, S.,Ionescu, A. M.,Mocanu, R.,Vîlcu, G. E.. (2011). Riemannian submersions from almost contact metric manifolds. Abh. Math. Semin. Univ....
    • Kumar, S.,Prasad, R.,Singh, P. K.. (2019). Conformal semi-slant submersions from Lorentzian para Sasakian manifolds. Commun. Korean Math....
    • Longwap, S.,Massamba, F.,Homti, N. E.. (2019). On quasi-hemi-slant Riemannian submersion. Journal of Advances in Mathematics and Computer...
    • O’Neill, B.. (1966). The fundamental equations of a submersion. Michigan Math. J.. 33. 459
    • Park, K.-S.,Prasad, R.. (2013). Semi-slant submersions. Bull. Korean Math. Soc. 50. 951
    • Prasad, R.,Shukla, S. S.,Kumar, S.. (2019). On quasi-bi-slant submersions. Mediterr. J. Math.. 16.
    • Prasad, R.,Singh, P. K.,Kumar, S.. (2020). On quasi-bi-slant submersions from Sasakian manifolds onto Riemannian manifolds. Afr. Mat.,. 32....
    • Şahin, B.. (2013). Semi-invariant submersions from almost Hermitian manifolds. Canad. Math. Bull.. 56. 173
    • Şahin, B.. (2011). Slant submersions from almost Hermitian manifolds. Bull. Math. Soc. Sci. Math. Roumanie. 54. 93-105
    • Şahin, B.. (2013). Riemannian submersion from almost Hermitian manifolds. Taiwanese J. Math.. 17. 629
    • Şahin, B.. (2017). Riemannian maps in Hermitian geometry and their applications. Elsevier. London.
    • Şahin, B.. (2010). Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent. Eur. J. Math.. 8. 437
    • Sayar, C.,Akyol, M. A.,Prasad, R.. (2020). Bi-slant submersions in complex geometry. Int. J. Geom. Methods Mod. Phys.. 17.
    • Sayar, C.,Taştan, H. M.,Özdemir, F.,Tripathi, M. M.. (2020). Generic submersions from Kaehler manifolds. Bull. Malays. Math. Sci. Soc.. 43....
    • Taştan, H. M.,Şahin, B.,Yanan, Ş.. (2016). Hemi-slant submersions. Mediterr. J. Math.. 13. 2171
    • Watson, B.. (1976). Almost Hermitian submersions. J. Differential Geometry. 11. 147
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno