Ir al contenido

Documat


Entropy solution for a nonlinear parabolic problem with homogeneous Neumann boundary condition involving variable exponents

  • Autores: U. Traoré
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 23, Nº. 3, 2021, págs. 385-409
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462021000300385
  • Enlaces
  • Resumen
    • español

      RESUMEN En este artículo probamos la existencia y unicidad de una solución de entropía para una ecuación parabólica no lineal con condiciones de borde Neumann homogéneas y data inicial en L1. Usando una técnica de discretización del tiempo, analizamos las preguntas de existencia, unicidad y estabilidad. El contexto funcional involucra espacios de Lebesgue y Sobolev con exponentes variables.

    • English

      ABSTRACT In this paper we prove the existence and uniqueness of an entropy solution for a non-linear parabolic equation with homogeneous Neumann boundary condition and initial data in L1. By a time discretization technique we analyze the existence, uniqueness and stability questions. The functional setting involves Lebesgue and Sobolev spaces with variable exponents.

  • Referencias bibliográficas
    • Abdellaoui, M.,Azroul, E.,Ouaro, S.,Traoré, U.. (2019). Nonlinear parabolic capacity and renormalized solutions for PDEs with diffuse measure...
    • Abdellaoui, M.,Azroul, E.. (2020). Nonlinear parabolic equations with data soft measure data. J. Nonlinear Evol. Equ. Appl.. 2019. 115
    • Andreianov, B.,Bendahmane, M.,Karlsenc, K. H.,Ouaro, S.. (2009). Well-posedness results for triply nonlinear degenerate parabolic equations....
    • Andreu, F.,Mazón, J. M.,Segura de Léon, S.,Toledo, J.. (1999). Existence and uniqueness for a degenerate parabolic equation with L1 data....
    • Andreu, F.,Igbida, N.,Mazón, J. M.,Toledo, J.. (2017). Ann. Inst. H. Poincaré Anal. Non Linéaire. 20. 61-89
    • Bendahmane, M.,Wittbold, P.,Zimmermann, A.. (2010). Renormalized solutions for a nonlinear parabolic equation with variable exponents and...
    • Benzekri, F.,El Hachimi, A.. (2003). Doubly nonlinear parabolic equations related to the p-Laplacian operator: Semi-discretization. Electron....
    • Bénilan, P.,Boccardo, L.,Gallouët, T.,Pierre, M.,Vazquez, J. L.. (1995). An L1 theory of existence and uniqueness of nonlinear elliptic equations....
    • Bonzy, B. K.,Nyanquini, I.,Ouaro, S.. (2012). Existence and uniqueness of weak and entropy solutions for homogeneous Neumann boundary-value...
    • Dall’Aglio, A.. (1996). Approximated solutions of equations with L1 data. Application to the H-convergence of quasi-linear parabolic equations....
    • Diening, L.,Harjulehto, P.,Hästö, P.,Ružička, M.. (2011). Lebesgue and Sobolev spaces with variable exponents. Springer-Verlag Heidelberg....
    • DiPerna, R. J.,Lions, P.-L.. (1989). On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. of Math. 130....
    • Eden, A.,Michaux, B.,Rakotoson, J.-M.. (1990). Semi-discretized nonlinear evolution equations as discrete dynamical systems and error analysis....
    • Fan, X. L.,Zhao, D.. (1998). On the generalized Orlicz-Sobolev space Wk,p(x) (Ω). Journal of Gansu Education College. 12. 1-6
    • Gagneux, G.,Madaune-Tort, M.. (1996). Analyse mathématique de modèles non linéaires de l’ingénierie pétrolière. Springer. Berlin.
    • El Hachimi, A.,Sidi Ammi, M. R.. (2004). Thermistor problem: a nonlocal parabolic problem. Differential Equations and Mechanics. Electron....
    • El Hachimi, A.,Igbida, J.,Jamea, A.. (2010). Existence result for nonlinear parabolic problems with L1 -data. Appl. Math. (Warsaw). 37. 483-508
    • Ouaro, S.,Soma, S.. (2011). Weak and entropy solutions to nonlinear Neumann boundary value-problems with variable exponents. Complex Var....
    • Ouaro, S.,Tchousso, A.. (2011). Well-posedness result for a nonlinear elliptic problem involving variable exponent and Robin type boundary...
    • Ouaro, S.,Ouédraogo, A.. (2017). Nonlinear parabolic problems with variable exponent and L1 - data. J. Differential Equations. 2017. 1-32
    • Ouaro, S.,Traoré, U.. (2020). Nonlinear parabolic problem with variable exponent and measure data. J. Nonlinear Evol. Equ. Appl.. 2020. 65-93
    • Sanchón, M.,Urbano, J. M.. (2009). Entropy solution for p(x)-Laplace equation. Trans. Amer. Math. Soc.. 361. 6387
    • Redwane, H.. (2020). Nonlinear parabolic equation with variable exponents and diffuse measure data. J. Nonl. Evol. Equ. Appl.. 2019. 95-114
    • Ružička, M.. (2000). Electrorheological fluids: modeling and mathematical theory. Springer-Verlag. Berlin.
    • Wang, L.-L.,Fan, Y.-H.,Ge, W.-G.. (2009). Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator....
    • Yao, J.. (2008). Solutions for Neumann boundary value problems involving p(x)-Laplace operator. Nonlinear Anal.. 68. 1271
    • Zhang, C.,Zhou, S.. (2010). Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1 data. Journal...
    • Zhao, D.,Qiang, W. J.,Fan, X. L.. (1997). On generalized Orlicz spaces L p(x) (Ω). J. Gansu Sci.. 9. 1-7
    • Zimmermann, A.. (2010). Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 data. T. U. Berlin.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno