Ir al contenido

Documat


A sufficiently complicated noded Schottky group of rank three

  • Autores: Rubén Antonio Hidalgo Árbol académico
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 22, Nº. 1, 2020, págs. 39-53
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462020000100039
  • Enlaces
  • Resumen
    • español

      Resumen En 1974, Marden demostró la existencia de grupos de Schottky no-clásicos con un argumento teórico y no-constructivo. Se conocen ejemplos explícitos solo en rango dos; el primero por Yamamoto en 1991 y después por Williams en 2009. En 2006, Maskit y el autor entregaron un método teórico para construir grupos de Schottky no-clásicos en cualquier rango. El método asume el conocimiento de ciertos límites algebraicos de grupos de Schottky, llamados grupos de Schottky anodados suficientemente complicados. El objetivo de este paper es dar un grupo de Schottky anodado suficientemente complicado explícitamente de rango tres y explicar cómo usarlo para construir grupos de Schottky no-clásicos explícitos.

    • English

      Abstract In 1974, Marden proved the existence of non-classical Schottky groups by a theoretical and non-constructive argument. Explicit examples are only known in rank two; the first one by Yamamoto in 1991 and later by Williams in 2009. In 2006, Maskit and the author provided a theoretical method to construct non-classical Schottky groups in any rank. The method assumes the knowledge of certain algebraic limits of Schottky groups, called sufficiently complicated noded Schottky groups. The aim of this paper is to provide explicitly a sufficiently complicated noded Schottky group of rank three and explain how to use it to construct explicit non-classical Schottky groups.

  • Referencias bibliográficas
    • Bobenko, A. I.. (1988). Schottky uniformization and finite-gap integration. Soviet Math. Dokl.. 36. 38-42
    • Button, J.. (1998). All Fuchsian Schottky groups are classical Schottky groups. The Epstein birthday schrift. 1. 117
    • Chuckrow, V.. (1967). Schottky groups and limits of Kleinian groups.. Bull. Amer. Math. Soc.. 73. 139
    • Hidalgo, R. A.. (1996). The noded Schottky space. London Math. Soc.. 73. 385-403
    • Hidalgo, R. A.. (1998). Noded Fuchsian groups.. Complex Variables. 36. 45-66
    • Hidalgo, R. A.. Towards a proof of the classical Schottky uniformization conjecture.
    • Hidalgo, R. A.,Maskit, B.. (2006). On neoclassical Schottky groups. Trans. of the Amer. Math. Soc.. 358. 4765
    • Hou, Y.. (2016). On smooth moduli space of Riemann surfaces.
    • Hou, Y.. (2016). The classification of Kleinian groups of Hausdorff dimensions at most one.
    • Jørgensen, T.,Marden, A.. (1990). Algebraic and geometric convergence of Kleinian groups. Math. Scand.. 66. 47-72
    • Koebe, P.. (1910). Über die Uniformisierung der Algebraischen Kurven II. Math. Ann.. 69. 1-81
    • Kra, I.,Maskit, B.. (1998). Analysis and Topology. World Scientific Press.
    • McMullen, C.. (1984). Complex Dynamics and Renormalization.. Princeton University Press.
    • Marden, A.. (1974). Contributions to Analysis (a collection of papers dedicated to Lipman Bers). Academic Press.
    • Maskit, B.. (1975). On the classification of Kleinian Groups I. Koebe groups.. Acta Math.. 135. 249
    • Maskit, B.. (1976). On the classification of Kleinian Groups II. Signatures.. Acta Math.. 138. 17-42
    • Maskit, B.. (1997). Remarks on m-symmetric Riemann surfaces. Contemporary Math.. 211. 433
    • Maskit, B.. (1993). On Klein’s combination theorem IV. Trans. Amer. Math. Soc.. 336. 265
    • Maskit, B.. (1981). On free Kleinian groups. Duke Math. J.. 48. 755
    • Maskit, B.. (1983). Parabolic elements in Kleinian groups. Annals of Math.. 117. 659
    • Purzitsky, N.. (1972). Two-Generator Discrete Free Products.. Math. Z.. 126. 209
    • Sato, H.. (1988). On a paper of Zarrow. Duke Math. J.. 57. 205
    • Seppälä, M.. (2004). Myrberg’s numerical uniformization of hyperelliptic curves.. Ann. Acad. Scie. Fenn. Math.. 29. 3-20
    • Williams, J. P.. (2009). Classical and non-classical Schottky groups. University of Southampton, School of Mathematics.
    • Yamamoto, Hiro-o. (1979). Sqeezing deformations in Schottky spaces.. J. Math. Soc. Japan. 31. 227
    • Yamamoto, Hiro-o. (1991). An example of a non-classical Schottky group. Duke Math. J.. 63. 193
    • Zarrow, R.. (1975). Classical and non-classical Schottky groups. Duke Math. J.. 42. 717
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno