Ir al contenido

Documat


Results on para-Sasakian manifold admitting a quarter symmetric metric connection

  • Autores: S. V. Vishnuvardhana., V. Venkatesha
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 22, Nº. 2, 2020, págs. 257-271
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462020000200257
  • Enlaces
  • Resumen
    • español

      Resumen En este artículo hemos estudiado variedades para-Sasakianas seudosimétricas, Ricci seudosimétricas y proyectivamente seudosimétricas que admiten una conexión métrica cuarto-simétrica, y construimos ejemplos de variedades para-Sasakianas 3-dimensional y 5-dimensional que admiten una conexión métrica cuarto-simétrica para verificar nuestros resultados.

    • English

      Abstract In this paper we have studied pseudosymmetric, Ricci-pseudosymmetric and projectively pseudosymmetric para-Sasakian manifold admitting a quarter-symmetric metric connection and constructed examples of 3-dimensional and 5-dimensional para-Sasakian manifold admitting a quarter-symmetric metric connection to verify our results.

  • Referencias bibliográficas
    • Kalam Mondal, Abul,De, U.C.. (2012). Quarter-symmetric nonmetric Connection on P-Sasakian manifolds. ISRN Geometry. 1-14
    • Soos, G.. (1958). Uber die geodatischen Abbildungen von Riemannaschen Raumen auf projektivsymmetrische Riemannsche Raume. Acta. Math. Acad....
    • Barman, A.. (2018). Concircular curvature tensor on a P-Sasakian manifold admitting a quartersymmetric metric connection. Kragujevac J. Math.....
    • Alekseevsky, D. V.. (2009). Cones over pseudo-Riemannian manifolds and their holonomy. J. Reine Angew. Math.. 635. 23-69
    • Cartan, E.. (1926). Surune classe remarquable d’espaces de Riema. Soc. Math., France. 54. 214
    • Ozgur, Cihan. (2005). On A class of para-Sakakian manifolds. Turk J Math.. 29. 249
    • Cortes, V.. (2004). Special geometry of Euclidean supersymmetry. I. Vector multiplets. J. High Energy Phys.. 03. 1-64
    • Cortes, V.,Lawn, M.-A.,Schafer, L.. (2006). Affine hyperspheres associated to special para-Kahler manifolds. Int. J. Geom. Methods Mod. Phys.....
    • Deszcz, R.. (1992). On pseudosymmetric spaces. Acta Math., Hungarica. 53. 185
    • Deszcz, R.,Yaprak, S.. (1994). Curvature properties of certain pseudosymmetric manifolds. Publ. Math. Debrecen. 45. 333
    • Deszcz, R.. (2015). On some curvature conditions of pseudosymmetry type. Period. Math. Hungar.. 70. 153
    • Golab, S.. (1975). On semi-symmetric and quarter-symmetric linear connections. Tensor. 29. 249
    • Haesen, S.,Verstraelen, L.. (2007). Properties of a scalar curvature invariant depending on two planes. Manuscripta Math.. 122. 59-72
    • Kaneyuki, S.,Williams, F. L.. (1985). Almost paracontact and parahodge structures on manifolds. Nagoya Math. J.. 99. 173
    • Bisht, Lata,Shanker, Sandhana. (2015). Curvature tensor on para-Sasakian manifold admitting quarter symmetric metric connection. IOSR Journal...
    • Mandal, K.,De, U. C.. (2015). Quarter-symmetric metric connection in a P-Sasakian manifold. An. Univ. Vest Timis. Ser. Mat.-Inform.. 53. 137
    • Pradeep Kumar, K.T.,Venkatesha,Bagewadi, C. S.. (2012). On _-recurrent para-Sasakian manifold admitting quarter-symmetric metric connection....
    • Sato, I.. (1976). On a structure similar to the almost contact structure. Tensor. 30. 219
    • Szabo, Z. I.. (1982). Structure theorems on Riemannian spaces satisfying R(X, Y ) ・R = 0. I.. J. Differential Geometry. 17. 531
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno