Ir al contenido

Documat


Mathematical Modeling of Chikungunya Dynamics: Stability and Simulation

  • Autores: Ruchi Arora, Dharmendra Kumar, Ishita Jhamb, Avina Kaur Narang
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 22, Nº. 2, 2020, págs. 177-201
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462020000200177
  • Enlaces
  • Resumen
    • español

      Resumen La infección debida al virus Chikungunya (CHIKV) tiene un período de recuperación sustancialmente prolongado, que es un período largo entre la etapa de infección y recuperación. Sin embargo, hasta ahora en los modelos existentes (SIR y SEIR), este período no ha recibido suficiente atención. Por tanto, para esta enfermedad, hemos modificado el modelo SEIR existente introduciendo una nueva sección de población humana que está en la etapa de recuperación o, en otras palabras, la población humana que ya no muestra síntomas agudos pero todavía no se recupera completamente. Se formula y estudia un modelo matemático a través de la existencia y estabilidad de su equilibrio libre de enfermedad (DFE) y puntos de equilibrio endémico (EE) en términos del número de reproducción básico asociado (R0).

    • English

      Abstract Infection due to Chikungunya virus (CHIKV) has a substantially prolonged recuperation period that is a long period between the stage of infection and recovery. However, so far in the existing models (SIR and SEIR), this period has not been given due attention. Hence for this disease, we have modified the existing SEIR model by introducing a new section of human population which is in the recuperation stage or in other words the human population that is no more showing acute symptoms but is yet to attain complete recovery. A mathematical model is formulated and studied by means of existence and stability of its disease free equilibrium (DFE) and endemic equilibrium (EE) points in terms of the associated basic reproduction number (R0).

  • Referencias bibliográficas
    • (2014). WHO Chikungunya.
    • (2014). WHO Chikungunya.
    • (2014). National Center for Biotechnology information Chikungunya outbreak.
    • Pialoux, G.,Gäuzère, B.,Jauréguiberry, S.,Strobel, M.. (2007). Chikungunya, an epidemic arbovirosis. The Lancet infectious diseases. 7. 319
    • Sergon, K.,Njuguna, C.,Kalani, R.,Ofula, V.,Onyango, C.,Konongoi, L.,Bedno, S.,Burke, H.,Dumilla, A. M.,Konde, J.,Kariuki Njenga, M.,Sang,...
    • Barro, M.,Guiro, A.,Ouedraogo, D.. (2018). Optimal control of a SIR epidemic model with general incidence function and a time delays. Cubo....
    • Oare, O.K.. (2014). Impact and optimal control of movement on a multipatch hepatitis C virus model. TWMS J. Pure Appl. Math.. 5. 80-95
    • Dumont, Y.,Chiroleu, F.,Domerg, C.. (2008). On a temporal model for the Chikungunya disease: modeling, theory and numerics. Math. Biosci.....
    • Moulay, D.,Aziz-Alaoui, M. A.,Cadivel, M.. (2011). The chikungunya disease: modeling, vector and transmission global dynamics. Math. Biosci.....
    • Yakob, L.,Clements, A. C. A.. (2013). A mathematical model of chikungunya dynamics and control: The major epidemic on runion island. PloS...
    • Naowarat, S.,Tang, I. M.. (2013). Transmission model of chikungunya fever in the presence of two species of aedes mosquitoes. American Journal...
    • Hincapie-Palacio, D.,Ospina, J.. (2015). Mathematical modeling of chikungunya fever control. 94870
    • Agusto, F. B.. (2016). Mathematical model of three age-structured transmission dynamics of Chikungunya virus. Comput. Math. Methods Med.. 31
    • Mohan, A.,Kiran, D. H. N.,Chiranjeevi Manohar, I.,Prabath Kumar, D.. (2010). Epidemiology, clinical manifestations, and diagnosis of chikungunya...
    • Manore, C.,Hickmann, K.,Xu, S.,Wearing, H.,Hyman, J.. (2014). Comparing dengue and chikungunya emergence and endemic transmission in a. aegypti...
    • Chitnis, N.,Hyman, J. M.,Cushing, J. M.. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis...
    • Delatte, H.,Gimonneau, G.,Triboire, A.,Fontenille, D.. (2009). Influence of temperature on immature development, survival, longevity, fecundity,...
    • Dumont, Y.,Chiroleu, F.. (2010). Vector control for the Chikungunya disease. Math. Biosci. Eng.. 7. 313
    • Lahariya, C.,Pradhan, S.. (2007). Emergence of chikungunya virus in indian subcontinent after 32 years: A review. Journal of vector borne...
    • Sebastian, M. R.,Lodha, R.,Kabra, S.. (2009). Chikungunya infection in children. The Indian Journal of Pediatrics. 76. 185
    • Schwartz, O.,Albert, M.. (2010). Biology and pathogenesis of chikungunya virus. Nature reviews. Microbiology. 8. 491-500
    • Costanzo, K.,Mormann, K.,Juliano, S.. (2005). Asymmetrical competition and patterns of abundance of aedes albopictus and culex pipiens (diptera:...
    • Hashim, N. A.,Hassan, A.,Abu Tahir, O. N.,Salmah, M.,Basari, N.. (2008). Population analysis of aedes albopictus (skuse) (diptera:culicidae)...
    • Dubrulle, M.,Mousson, L.,Moutailler, S.,Vazeille, M.,Failloux, A. B.. (2009). Chikungunya virus and aedes mosquitoes: Saliva is infectious...
    • Mavalankar, D.,Shastri, P.,Bandyopadhyay, T.,Parmar, J.,Ramani, K.. (2008). Increased mortality rate associated with chikungunya epidemic,...
    • Poletti, P.,Messeri, G.,Ajelli, M.,Vallorani, R.,Rizzo, C.,Merler, S.. (2011). Transmission potential of chikungunya virus and control measures:...
    • Turell, M.,Beaman, J. R.,Tammariello, R. F.. (1992). Susceptibility of selected strains of aedes aegypti and aedes albopictus (diptera: Culicidae)...
    • Massad, E.,Ma, S.,Burattini, M.,Tun, Y.,Coutinho, F.,Ang, L.. (2008). The risk of chikungunya fever in a dengueendemic area. Journal of travel...
    • Pesko, K.,Westbrook, C. J.,Mores, C.,Lounibos, L. Philip,Reiskind, M.. (2009). Effects of infectious virus dose and bloodmeal delivery method...
    • Lakshmikantham, V.,Leela, S.,Martynyuk, A.A.. (2015). Stability Analysis of Nonlinear Systems. Systems & Control: Foundations & Applications....
    • Driessche, P. van den,Watmough, J.. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease...
    • Jones, J. H.. (2007). Notes on r0. Department of Anthropological Sciences Stanford University.
    • Simmons, G.F.. (2016). Differential Equations with Applications and Historical Notes. Textbooks in Mathematics. CRC Press.
    • Bhunu, C.,Garira, W.,Mukandavire, Z.. (2009). Modeling hiv/aids and tuberculosis coinfection. Bulletin of mathematical biology. 71. 1745
    • Castillo-Chavez, C.,Feng, Z.,Huang, W.. (2002). Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction....
    • DeJesus,Kaufman, C.. (1987). Routh-hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno