Ir al contenido

Documat


A new iterative method based on the modified proximal-point algorithm for finding a common null point of an infinite family of accretive operators in Banach spaces

  • Autores: T.M.M. Sow
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 22, Nº. 2, 2020, págs. 155-175
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462020000200155
  • Enlaces
  • Resumen
    • español

      Resumen En este artículo, introducimos y estudiamos un nuevo método iterativo para encontrar un cero común de una familia infinita de operadores acretivos con un operador Lischitziano fuertemente acretivo, usando el algoritmo punto-proximal. También demostramos que el cero común es la única solución de una desigualdad variacional sin imponer ninguna condición de tipo compacidad en ninguno de los operadores o los espacios considerados. Finalmente, se entregan algunas aplicaciones de los resultados principales a problemas de equilibrio y problemas de punto fijo con una familia infinita de aplicaciones pseudo-contractivas. El resultado principal es una generalización y mejora de numerosos resultados bien conocidos en la literatura disponible.

    • English

      Abstract In this paper, we introduce and study a new iterative method for finding a common null point of an infinite family of accretive operators with a strongly accretive and Lipschitzian operator, by using the proximal-point algorithm. And also we prove that the common null point is a unique solution of variational inequality without imposing any compactness-type condition on either the operators or the space considered. Finally, some applications of the main results to equilibrium problems and fixed point problems with an infinite family of pseudocontractive mappings are given. The main result is a generalization and improvement of numerous well-known results in the available literature.

  • Referencias bibliográficas
    • Alber, Ya.. (1996). Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Marcel Dekker. New York.
    • Boikanyo, O. A.,Morosanu, G.. (2009). Modified Rockafellar’s algorithm. Math. Sci. Res. J.. 13. 101
    • Browder, F. E.. (1976). Convergenge theorem for sequence of nonlinear operator in Banach spaces. Math. Z.. 100. 201
    • Blum, E.,Oettli, W.. (1994). From optimization and variational inequalities to equilibrium problems. Math. Student. 63. 123
    • Bruck Jr., R. E.. (1974). A strongly convergent iterative solution of 0 ∈ U(x) for a maximal monotone operator U in Hilbert space. J. Math....
    • Flam, S. D.,Antipin, A. S.. (1997). Equilibrium programming using proximal-like algorithms. Math. Programming. 78. 29-41
    • Cioranescu, I.. (1990). Geometry of Banach spaces, duality mappings and nonlinear problems. Kluwer Academic Publishers Group. Dordrecht.
    • Chang, S.,Kim, J. K.,Wang, X. R.. (2010). Modified block iterative algorithm for solving convex feasibility problems in Banach spaces. J....
    • Chidume, C.. (2009). Geometric properties of Banach spaces and nonlinear iterations. Springer-Verlag London, Ltd.,. London.
    • Eslamian, M.,Vahidi, J.. (2016). General proximal point algorithm for monotone operators. Ukraın.Mat. Zh.. 68. 1483
    • Fan, K.. (1972). Inequalities. Academic Press. New York, NY, USA..
    • Goebel, K.,Reich, S.. (1984). Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Marcel Dekker, Inc.,. New York.
    • Kim, J. K.,Tuyen, T. M.. (2017). New iterative methods for finding a common zero of a finite family of monotone operators in Hilbert spaces....
    • Kim, J. K.,Buong, N.. (2013). A new iterative method for equilibrium problems and fixed point problems for infinite family of nonself strictly...
    • Kim, J. K,Tuyen, T. M.. (2015). Viscosity approximation method with Meir-Keeler contractions for common zero of accretive operators in Banach...
    • Kim, J. K.,Anh, P. N.,Hyun, H. G.. (2012). A proximal point-type algorithm for pseudo equilibrium problems. Bull. Korean Math. Soc.. 49. 747
    • Kim, J. K.,Salahuddin. (2018). Existence of solutions for multi-valued equilibrium problems. Nonlinear Funct. Anal. and Appl.. 23. 779
    • Kim, J. K.,Salahuddin. (2017). Extragradient methods for generalized mixed equilibrium problems and fixed point problems in Hilbert spaces....
    • Lehdili, N.,Moudafi, A.. (1996). Combining the proximal algorithm and Tikhonov method. Optimization. 37. 239
    • Izuchukwu, C.. (2019). A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space. Appl. Gen. Topol.. 20....
    • Jolaoso, L.O.,Alakoya, T.O.,Taiwo, A.,Mewomo, O.T.. (2019). A parallel combination extragradient method with Armijo line searching for finding...
    • Lim, T. C.,Xu, H. K. (1994). Fixed point theorems for assymptoticaly nonexpansivemapping. Nonliear Anal. 22. 1345
    • Miyadera, I.. (1992). Nonlinear semigroups. American Mathematical Society. Providence, RI..
    • Opial, Z.. (1967). Weak convergence of sequence of succecive approximation of nonexpansive mapping. Bull; Amer. Math. soc.. 73. 591
    • Rockafellar, R. T.. (1976). Monotone operators and the proximal point algorithm. SIAM J. Control Optim.. 14. 877
    • Reich, S.. (1979). Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl.. 67. 274
    • Solodov, M. V.,Svaiter, B. F.. (2000). Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program.. 87. 189-202
    • Tian, C.,Song, Y.. (2013). Strong convergence of a regularization method for Rockafellar’s proximal point algorithm. J. Global Optim.. 55....
    • Takahashi, S.,Takahashi, W.,Toyoda, M.. (2010). Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert...
    • Xu, H.-K.. (2006). A regularization method for the proximal point algorithm. J. Global Optim.. 36. 115
    • Xu, H.-K.. (2002). Iterative algorithms for nonlinear operators. J. London Math. Soc.. 66. 240
    • Yao, Y.,Noor, M. A.. (2008). On convergence criteria of generalized proximal point algorithms. J. Comput. Appl. Math.. 217. 46-55
    • Wang, S.. (2011). A general iterative method for obtaining an infinite family of strictly pseudocontractive mappings in Hilbert spaces. Appl....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno