Ir al contenido

Documat


Certain results for η-Ricci Solitons and Yamabe Solitons on quasi-Sasakian 3-Manifolds

  • Autores: Sunil Kumar Yadav, Abhishek Kushwaha, Dhruwa Narain
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 21, Nº. 2, 2019, págs. 77-98
  • Idioma: español
  • DOI: 10.4067/S0719-06462019000200077
  • Enlaces
  • Resumen
    • español

      RESUMEN Clasificamos 3-variedades cuasi-Sasakianas con solitones η-Ricci propios e investigamos sus propiedades geométricas. Ciertos resultados sobre el solitón de Yamabe en dichas variedades también se presentan. Finalmente, construimos un ejemplo de la no existencia de solitones η-Ricci propios en una 3-variedad cuasi-Sasakiana para ilustrar los resultados contenidos en el artículo.

    • English

      ABSTRACT We classify quasi-Sasakian 3-manifold with proper η-Ricci soliton and investigate its geometrical properties. Certain results of Yamabe soliton on such manifold are also presented. Finally, we construct an example of non-existence of proper η-Ricci soliton on 3-dimensional quasi-Sasakian manifold to illustrate the results obtained in previous section of the paper.

  • Referencias bibliográficas
    • Agricola, I.. (2003). Killing spinors in supergravity with 4-fluxes. Class.Quant.Grav.. 20. 4707
    • Agricola, I.,Friedrich, T.,Nagy,, P.A.,Puhle, C.. (2005). On the Ricci tensor in the common sector of type II,string theory. Class. Quan....
    • Acharya, B. S.,Figueroa, A-O’Farrell,Hull, M. C,Spence, B. J.. (1999). Branes at canonical singularities and holography. Adv. Theor. Math....
    • Blair, D. E.. (1967). The theory of quasi-Sasakian structure. Journal of Differential Geom.. 1. 331
    • Blair, D. E.. (2010). Riemannian geometry of contact and symplectic maniifolds. Birkhauser. Boston.
    • Barabosa, E.,Ribeiro Jr, E.. (2013). On conformal solution of the Yamabe flow. Arch., Math.. 101. 73-89
    • Blaga, A. M.. (2016). η-Ricci solitons on Lorentzian para-Sasakian manifolds. Filomat. 30. 489
    • Blaga,, A. M.. (2015). η-Ricci solitons on para-Kenmotsu manifolds. Balkan J. Geom. Appl.. 20. 1-13
    • Calin, C.,Crasmareanu, M.. (2010). From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds. Bull. Malays. Math. Soc.. 33. 361
    • Cho, J. T,Kimura, M.. (2009). Ricci soliltons and real hypersurfaces in a complex space form. Tohoku Math. J.. 61. 205
    • Chaki, M. C.,Kawaguchi, T.. (2007). On almost pseudo Ricci symmetric manifolds. Tensor. 10
    • Deshmukh, S.,Alodan, H.,Al-Sodais, H.. (2011). A note on Ricci soliton. Balkan J. Geom. Appl.. 1. 48-55
    • De, U. C.,Sarkar, A.. (2008). On ϕ-Ricci symmetric Sasakian manifolds. Proc. Jangjeon Math. Soc.. 11. 47-52
    • Friedrich, T.,Ivanov, S.. Almost contact manifolds connection with torsion and parallel spinors. Journal Reine Angew. Math.. 559. 217
    • Gray, A.. (1978). Einstein-like manifolds which are not Einstein. Geom. Dedicata.. 7. 259
    • Gonzalez, J. C.,Chinea, D.. (1989). Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1). Proc. Amer. Math. Soc.....
    • Hamilton, R. S.. (1988). The Ricci flow on surfaces, Mathematics and general relativity. Contemp. Math.. 71. 237
    • Hui, S. K.,Yadav,, S. K.,Patra, A.. (2019). Almost conformal Ricci solitons on f-Kenmotsu manifolds. Khayyam J. Math.. 1. 84-104
    • Hui, S. K.,Yadav, S. K.,Chaubey,, S. K.. (2018). η-Ricci soliton on 3-dimensional f-Kenmotsu manifolds. Appl. Appl. Math.. 13. 933
    • Ivey, T. (1993). Ricci solitons on compact 3-manifolds. Diff. Geom. Appl.. 3. 301
    • Kanemaki, S.. (1977). Quasi-Sasakian manifolds. Tohoku Math. J.. 29. 227
    • Kim, B. H. (1990). Fibred Riemannian spaces with quasi-Sasakian structure. Hiroshima Math.J.. 20. 477-513
    • Kon, M. (1976). Invariant submanifolds in Sasakian manifolds. Mathematische Annalen. 219. 277
    • Mandal, A. K.,De, A. (2011). Some theorems on 3-dimensional quasi-Sasakian manifolds. Tamsui Oxford Journal of Information and Mathematical...
    • Olszak, Z. (1996). On three-dimensional conformally flat quasi-Sasakian manifolds. Period, Math. Hungar. 2. 105
    • Oubina, J. A.. (1985). New classes of almost contact metric structures. Publ. Math. Debreceen. 32. 187
    • Olszak, Z. (1986). Normal almost contact metric manifolds of dimension three. Ann. Polon.Math.. 47. 41-50
    • Pokhariyal,, G. P.,Yadav, S. K.,Chaubey, S. K.. (2018). Ricci solitons on trans-Sasakian mani-folds. Differential Geometry-Dynamical Systems.....
    • Singh, H.,Khan, Q.. (2001). On special weakly symmetric Riemannian manifolds. Publ. Math. Debrecen. 3. 523
    • Tanno, S. (1971). Quasi-Sasakian structure of rank (2p+1). Journal Differential Geom.. 5. 317
    • Yadav, S. K.. (2019). On (∊)-almost paracontact metric manifolds with conformal η-Ricci solitons. Differential Geometry-Dynamical Systems.....
    • Yadav, S. K.,Chaubey, S. K.,Suthar,, D. L.. (2018). Some results of η-Ricci soliton on (LCS)-manifolds. Surveys in Mathematics and its Applications....
    • S. K., Yadav,S. K, Chaubey,Suthar, D. L.. (2017). Some geometric properties of η-Ricci solitons and gradient Ricci solitons on (LCS)n-manifolds....
    • K., Yano. (1970). Integral Formulas in Riemannian geometry. Marcel Dekker. New York.
    • Ye, R. (1994). Global existence and convergence of Yamabe flow. Journal Differ., Geom.. 1. 35-50
    • Yadav, S. K. (2019). Ricci solitons on para-Kähler manifolds. Extracta Mathematicae. 2.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno